Skip to main content

Urey: Mars Organic and Oxidant Detector

Abstract

One of the fundamental challenges facing the scientific community as we enter this new century of Mars research is to understand, in a rigorous manner, the biotic potential both past and present of this outermost terrestrial-like planet in our solar system. Urey: Mars Organic and Oxidant Detector has been selected for the Pasteur payload of the European Space Agency’s (ESA’s) ExoMars rover mission and is considered a fundamental instrument to achieve the mission’s scientific objectives. The instrument is named Urey in recognition of Harold Clayton Urey’s seminal contributions to cosmochemistry, geochemistry, and the study of the origin of life. The overall goal of Urey is to search for organic compounds directly in the regolith of Mars and to assess their origin. Urey will perform a groundbreaking investigation of the Martian environment that will involve searching for organic compounds indicative of life and prebiotic chemistry at a sensitivity many orders of magnitude greater than Viking or other in situ organic detection systems. Urey will perform the first in situ search for key classes of organic molecules using state-of-the-art analytical methods that provide part-per-trillion sensitivity. It will ascertain whether any of these molecules are abiotic or biotic in origin and will evaluate the survival potential of organic compounds in the environment using state-of-the-art chemoresistor oxidant sensors.

This is a preview of subscription content, access via your institution.

References

  1. S.K. Atreya et al., Astrobiology 6, 439–450 (2006)

    Article  ADS  Google Scholar 

  2. A. Aubrey, H.J. Cleaves, J.H. Chalmers, A.M. Skelley, R.A. Mathies, F.J. Grunthaner, P. Ehrenfreund, J.L. Bada, Geology 34, 357–360 (2006)

    Article  ADS  Google Scholar 

  3. J.L. Bada, Proc. Natl. Acad. Sci. USA 98, 797–800 (2001)

    Article  ADS  Google Scholar 

  4. J.L. Bada, Earth Planet. Sci. Lett. 226, 1–15 (2004)

    Article  ADS  Google Scholar 

  5. J.L. Bada, G. McDonald, Icarus 114, 139–143 (1995)

    Article  ADS  Google Scholar 

  6. S.A. Benner, K.G. Devine, L.N. Matveeva, D.H. Powell, Proc. Natl. Acad. Sci. 97, 2425–2430 (2000)

    Article  ADS  Google Scholar 

  7. J.-P. Bibring, Omega Team, Science 312, 400–404 (2006)

    Article  ADS  Google Scholar 

  8. K. Biemann, J. Oro, P. Toulmin III, L.E. Orgel, A.O. Nier, D.M. Anderson, P.G. Simmonds, D. Flory, A.V. Diaz, D.R. Rushneck, J.A. Biller, Science 194, 72–76 (1976)

    Article  ADS  Google Scholar 

  9. K. Biemann, J. Oro, P. Toulmin III, L.E. Orgel, A.O. Nier, D.M. Anderson, P.G. Simmonds, D. Flory, A.V. Diaz, D.R. Ruchneck, J.E. Biller, A.L. LaFleur, J. Geophys. Res. 82, 4641–4658 (1977)

    Article  ADS  Google Scholar 

  10. J.L. Bishop, M. Dyar, M. Lane, J. Banfield, Intern. J. Astrobiol. 3, 275–285 (2005)

    Article  Google Scholar 

  11. O. Botta, J.L. Bada, Surv. Geophys. 23, 411–467 (2002)

    Article  ADS  Google Scholar 

  12. M.A. Bullock, C.R. Stoker, C. McKay, A. Zent, Icarus 107, 142–152 (1994)

    Article  ADS  Google Scholar 

  13. L.R. Dartnell, L. Desorgher, J.M. Ward, A.J. Coates, Geophys. Res. Lett. 34, LO2207 (2007)

    Article  Google Scholar 

  14. C. de Duve, Singularities: Landmarks on the Pathways of Life (Cambridge University Press, NY, 2005)

    Google Scholar 

  15. P. Ehrenfreund, S. Rasmussen, J.H. Cleaves, L. Chen, Astrobiology 6/3, 490–520 (2006)

    Article  ADS  Google Scholar 

  16. P. Ehrenfreund et al., Reports Prog. Phys. 65, 1427–1487 (2002)

    Article  ADS  Google Scholar 

  17. T. Encrenaz et al., Icarus 170, 424–429 (2004)

    Article  ADS  Google Scholar 

  18. V. Formisano, S. Atreya, T. Encrenaz, N. Ignatiev, M. Gluranna, Science 306, 1758–1761 (2004)

    Article  ADS  Google Scholar 

  19. D.P. Glavin, M. Schubert, O. Botta, G. Kminek, J.L. Bada, Earth Planet. Sci. Lett. 185, 1–5 (2001)

    Article  ADS  Google Scholar 

  20. H.P. Klein, Icarus 34, 666–674 (1978)

    Article  ADS  Google Scholar 

  21. H.P. Klein, Rev. Geophys. Space Phys. 17, 1655–1662 (1979)

    Article  ADS  Google Scholar 

  22. G. Kminek, J.L. Bada, Earth Planet. Sci. Lett. 245, 1–5 (2006)

    Article  ADS  Google Scholar 

  23. V. Krasnopolsky, J.P. Maillard, T. Owen, Icarus 172, 537–547 (2004)

    Article  ADS  Google Scholar 

  24. G.V. Levin, P.A. Straat, J. Geophys. Res. 82, 4663–4668 (1977)

    Article  ADS  Google Scholar 

  25. W.E. Moerner, M. Orritt, Science 283, 1670–1676 (1999)

    Article  ADS  Google Scholar 

  26. R. Navarro-Gonzales et al., Science 302, 1018–1021 (2003)

    Article  ADS  Google Scholar 

  27. V.I. Oyama, B.J. Berdahl, J. Geophys. Res. 82, 4669–4676 (1977)

    Article  ADS  Google Scholar 

  28. N.P. Pace, Proc. Natl. Acad. Sci. USA 98, 805–808 (2001)

    Article  ADS  Google Scholar 

  29. F. Poulet, OmegaTeam, Nature 4381, 623–627 (2005)

    Article  Google Scholar 

  30. R.C. Quinn, A.P. Zent, F.J. Grunthaner, P. Ehrenfreund, C.L. Taylor, J.R.C. Garry, Planet. Space Sci. 53, 1376–1388 (2005)

    Article  ADS  Google Scholar 

  31. M.A. Sephton, O. Botta, Intern. J. Astrobiol. 4, 269–276 (2005)

    Article  ADS  Google Scholar 

  32. A.M. Skelley, J.R. Scherer, A.D. Aubrey, W.H. Grover, R.H.C. Ivester, P. Ehrenfreund, F.J. Grunthaner, J.L. Bada, R.A. Mathies, Proc. Natl. Acad. Sci. USA 102, 1041–1046 (2005)

    Article  ADS  Google Scholar 

  33. M. Thomas, J.D.A. Clarke, C.F. Pain, Aust. J. Earth Sci. 52, 365–378 (2005)

    Article  Google Scholar 

  34. A.S. Yen, S.S. Kim, M. Hecht, M.S. Frant, B. Murray, Science 289, 1909–1912 (2000)

    Article  ADS  Google Scholar 

  35. H. Yoshida, M. Terashima, Y. Takahashi, Biotechnol. Prog. 15, 1090–1094 (1999)

    Article  Google Scholar 

  36. A.P. Zent, C.P. McKay, Icarus 108, 146–157 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. L. Bada.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bada, J.L., Ehrenfreund, P., Grunthaner, F. et al. Urey: Mars Organic and Oxidant Detector. Space Sci Rev 135, 269–279 (2008). https://doi.org/10.1007/s11214-007-9213-3

Download citation

Keywords

  • Mars
  • Life detection instrumentation
  • Space research