Advertisement

Space Science Reviews

, Volume 129, Issue 4, pp 309–326 | Cite as

Advanced Technologies Demonstrated by the Miniature Integrated Camera and Spectrometer (MICAS) Aboard Deep Space 1

  • David H. Rodgers
  • Patricia M. Beauchamp
  • Laurence A. Soderblom
  • Robert H. Brown
  • Gun-Shing Chen
  • Meemong Lee
  • Bill R. Sandel
  • David A. Thomas
  • Robert T. Benoit
  • Roger V. Yelle
Article

Abstract

MICAS is an integrated multi-channel instrument that includes an ultraviolet imaging spectrometer (80–185 nm), two high-resolution visible imagers (10–20 μrad/pixel, 400–900 nm), and a short-wavelength infrared imaging spectrometer (1250–2600 nm). The wavelength ranges were chosen to maximize the science data that could be collected using existing semiconductor technologies and avoiding the need for multi-octave spectrometers. It was flown on DS1 to validate technologies derived from the development of PICS (Planetary Imaging Camera Spectrometer). These technologies provided a novel systems approach enabling the miniaturization and integration of four instruments into one entity, spanning a wavelength range from the UV to IR, and from ambient to cryogenic temperatures with optical performance at a fraction of a wavelength. The specific technologies incorporated were: a built-in fly-by sequence; lightweight and ultra-stable, monolithic silicon-carbide construction, which enabled room-temperature alignment for cryogenic (85–140 K) performance, and provided superb optical performance and immunity to thermal distortion; diffraction-limited, shared optics operating from 80 to 2600 nm; advanced detector technologies for the UV, visible and short-wavelength IR; high-performance thermal radiators coupled directly to the short-wave infrared (SWIR) detector optical bench, providing an instrument with a mass less than 10 kg, instrument power less than 10 W, and total instrument cost of less than ten million dollars. The design allows the wavelength range to be extended by at least an octave at the short wavelength end and to ∼50 microns at the long wavelength end. Testing of the completed instrument demonstrated excellent optical performance down to 77 K, which would enable a greatly reduced background for longer wavelength detectors. During the Deep Space 1 Mission, MICAS successfully collected images and spectra for asteroid 9969 Braille, Mars, and comet 19/P Borrelly. The Borrelly encounter was a scientific hallmark providing the first clear, high resolution images and excellent, short-wavelength infrared spectra of the surface of an active comet’s nucleus.

Keywords

Comet Asteroid Borrelly Braille Mars Near-IR imaging spectrometer UV imaging spectrometer CCD camera Athermal optics Self-sequencing Silicon carbide Multifunction space instrument 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Bhaskaran, J.E. Riedel, B. Kennedy, T.C. Wang, Navigation of the Deep Space 1 Spacecraft at Borrelly AIAA paper 2002-4815, AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Monterey, CA, 2002 Google Scholar
  2. P.M. Beauchamp, R.H. Brown, C.F. Bruce, G.-S. Chen, M.P. Chrisp, G.A. Fraschetti, T.N. Krabach, S.W. Petrick, D.H. Rodgers, J. Rodriguez, S.L. Soll, A.H. Vaughan, L.A. Soderblom, B.R. Sandel, R.V. Yelle, Proc. SPIE 2214, 269–277 (1994) CrossRefADSGoogle Scholar
  3. P.M. Beauchamp, L. Alkalai, R.H. Brown, R.W. Capps, G.-S. Chen, M.P. Crisp, J.A. Cutts, J.M. Davidson, S.W. Petrick, D.H. Rodgers, G. Vane, L.A. Soderblom, R.V. Yelle, Proc. SPIE 2810, 22–30 (1996) CrossRefADSGoogle Scholar
  4. P.M. Beauchamp, R.T. Benoit, R.H. Brown, C.F. Bruce, G.-S. Chen, M.P. Crisp, J.M. Davidson, G.A. Fraschetti, S.W. Petrick, D.H. Rodgers, B.R. Sandel, C.A. Sepulveda, L.A. Soderblom, D. Wang, S.L. Soll, R.V. Yelle, Proc. SPIE 2744, 698–711 (1996) CrossRefADSGoogle Scholar
  5. P.M. Beauchamp, R.H. Brown, C.F. Bruce, G.-S. Chen, M.P. Chrisp, G.A. Fraschetti, T.N. Krabach, S.W. Petrick, D.H. Rodgers, J. Rodriguez, S.L. Soll, A.H. Vaughan, L.A. Soderblom, B.R. Sandel, R.V. Yelle, Acta Astronaut. 35, 99–108 (1995) CrossRefADSGoogle Scholar
  6. B.J. Buratti, D.T. Britt, L.A. Soderblom, M.D. Hicks, D.C. Boice, R.H. Brown, R. Meier, R.M. Nelson, J. Oberst, T.C. Owen, A.S. Rivkin, B.R. Sandel, S.A. Stern, N. Thomas, R.V. Yelle, Icarus 167, 129–135 (2004) CrossRefADSGoogle Scholar
  7. P.L. Lamy, I. Toth, H.A. Weaver, Astron. Astrophys. 337, 945–954 (1998) ADSGoogle Scholar
  8. M. Lee, R.J. Weidner, AIAA SpaceOps-2002 (Houston, 2002) Google Scholar
  9. M. Lee, R.J. Weidner, L.A. Soderblom, Deep space one mission and observation of Comet Borrelly. 45th IEEE International Midwest Symposium on Circuits and System (MWSCAS), 2002 Google Scholar
  10. B. Mueller, N. Samarasinha, Bull. Am. Astron. Soc. 33, 1090 (2001) ADSGoogle Scholar
  11. B.E.A. Mueller, N.H. Samarasinha, Earth Moon Planets 90, 463–471 (2002) CrossRefADSGoogle Scholar
  12. J. Oberst, B. Brinkmann, B. Giese, Geometric calibration of the MICAS CCD sensor on the DS1 (Deep Space One) spacecraft, laboratory vs. inflight data analysis, ISPRS 33, #221 [CD-ROM], Amsterdam, 2000 Google Scholar
  13. M.D. Rayman, Acta Astronaut. 51, 507 (2002) CrossRefGoogle Scholar
  14. M.D. Rayman, P. Varghese, Acta Astronaut. 48, 693 (2001) CrossRefADSGoogle Scholar
  15. M.D. Rayman, P. Varghese, D.H. Lehman, L.L. Livesay, Acta Astronaut. 47, 475 (2001) CrossRefADSGoogle Scholar
  16. D.H. Rodgers, L. Alkalai, P.M. Beauchamp, G.-S. Chen, M.P. Crisp, R.H. Brown, J.M. Davidson, D.D. Huxtable, P.A. Penzo, S.W. Petrick, L.A. Soderblom, A. Stewart, G. Vane, R.V. Yelle, Proc. SPIE 2810, 11–21 (1996) CrossRefADSGoogle Scholar
  17. L.A. Soderblom, R.V. Yelle, Abstr. LPSC 32, 1473 (2001) Google Scholar
  18. L.A. Soderblom, D.C. Boice, D.T. Britt, R.H. Brown, B.J. Buratti, R.L. Kirk, M. Lee, R.M. Nelson, J. Oberst, B.R. Sandel, S.A. Stern, N. Thomas, R.V. Yelle, Icarus 167, 4–15 (2004a) CrossRefADSGoogle Scholar
  19. L.A. Soderblom, D.T. Britt, R.H. Brown, B.J. Buratti, R.L. Kirk, T.C. Owen, R.V. Yelle, Icarus 167, 100–112 (2004b) CrossRefADSGoogle Scholar
  20. L.A. Soderblom, P.M. Beauchamp, G.-S. Chen, S.T. Elliott, G.A. Fraschetti, M. Lee, B. Pain, S.W. Petrick, P.G. Ringold, D.H. Rodgers, B.R. Sandel, S.L. Soll, D.A. Thomas, D. Wang, Miniature Integrated Camera Spectrometer (MICAS) technology validation report. Extended Abstracts and Fact Sheets, Deep Space 1 Technologies, Deep Space 1 Technology Validation Symposium, Pasadena, CA, Feb. 8–9, 2000 Google Scholar
  21. L.A. Soderblom, T.L. Becker1, G. Bennett, D.C. Boice, D.T. Britt, R.H. Brown, B.J. Buratti, C. Isbell, B. Giese, T. Hare, M.D. Hicks, E. Howington-Kraus, R.L. Kirk, M. Lee, R.M. Nelson, J. Oberst, T.C. Owen, B.R. Sandel, M.D. Rayman, S.A. Stern, N. Thomas, R.V. Yelle, Science 296, 1087–1091 (2002) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • David H. Rodgers
    • 1
  • Patricia M. Beauchamp
    • 1
  • Laurence A. Soderblom
    • 2
  • Robert H. Brown
    • 3
  • Gun-Shing Chen
    • 1
  • Meemong Lee
    • 1
  • Bill R. Sandel
    • 3
  • David A. Thomas
    • 4
  • Robert T. Benoit
    • 5
  • Roger V. Yelle
    • 3
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.United States Geological SurveyFlagstaffUSA
  3. 3.University of ArizonaTucsonUSA
  4. 4.The Aerospace CorporationEl SegundoUSA
  5. 5.SSG, IncorporatedWilmingtonUSA

Personalised recommendations