Skip to main content

Advertisement

Log in

Composition of Light Solar Wind Noble Gases in the Bulk Metallic Glass flown on the Genesis Mission

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We discuss data of light noble gases from the solar wind implanted into a metallic glass target flown on the Genesis mission. Helium and neon isotopic compositions of the bulk solar wind trapped in this target during 887 days of exposure to the solar wind do not deviate significantly from the values in foils of the Apollo Solar Wind Composition experiments, which have been exposed for hours to days. In general, the depth profile of the Ne isotopic composition is similar to those often found in lunar soils, and essentially very well reproduced by ion-implantation modelling, adopting the measured velocity distribution of solar particles during the Genesis exposure and assuming a uniform isotopic composition of solar wind neon. The results confirm that contributions from high-energy particles to the solar wind fluence are negligible, which is consistent with in-situ observations. This makes the enigmatic “SEP-Ne” component, apparently present in lunar grains at relatively large depth, obsolete. 20Ne/ 22Ne ratios in gas trapped very near the metallic glass surface are up to 10% higher than predicted by ion implantation simulations. We attribute this superficially trapped gas to very low-speed, current-sheet-related solar wind, which has been fractionated in the corona due to inefficient Coulomb drag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.P. Benkert, H. Baur, P. Signer, R. Wieler, J. Geophys. Res. – Planets 98, 13147 (1993)

    Article  ADS  Google Scholar 

  • D.C. Black, R.O. Pepin, Earth Planet. Sci. Lett. 6, 395 (1969)

    Article  ADS  Google Scholar 

  • R. Bodmer, P. Bochsler, Astron. Astrophys. 337, 921 (1998)

    ADS  Google Scholar 

  • P. Bochsler, Space Sci. Rev. this volume (2007)

  • D.S. Burnett et al., Space Sci. Rev. 105, 509 (2003)

    Article  ADS  Google Scholar 

  • P. Etique, P. Signer, R. Wieler, Lunar Planet. Sci. Conf. XII (1981), pp. 265–267

  • J. Geiss, P. Hirt, H. Leutwyler, Sol. Phys. 12, 458 (1970)

    Article  ADS  Google Scholar 

  • J. Geiss et al., Space Sci. Rev. 110, 307 (2004)

    Article  ADS  Google Scholar 

  • A.G. Ghielmetti, H. Balsiger, R. Bänninger, P. Eberhardt, J. Geiss, D.T. Young, Rev. Sci. Instruments 54, 425 (1983)

    Article  ADS  Google Scholar 

  • G. Gloeckler et al., Space Sci. Rev. 86, 497 (1998)

    Article  ADS  Google Scholar 

  • A. Grimberg, F. Bühler, P. Bochsler, V.S. Heber, H. Baur, R. Wieler, Lunar Planet. Sci. XXXVI, abstract #1355 (2005)

  • A. Grimberg et al., Science 314, 1133 (2006)

    Article  ADS  Google Scholar 

  • V. Heber, PhD Thesis, ETH Zürich, Nr. 14579, 2002, p. 157

  • D. Hovestadt et al., Sol. Phys. 162, 441 (1995)

    Article  ADS  Google Scholar 

  • A.J.G. Jurewicz et al., Space Sci. Rev. 105, 535 (2003)

    Article  ADS  Google Scholar 

  • R. Kallenbach et al., J. Geophys. Res. – Space Phys. 102, 26895 (1997a)

    Article  ADS  Google Scholar 

  • R. Kallenbach et al., in 31st ESALAB Symposium, Correlated Phenomena at the Sun, in the Heliosphere and in Geospace (1997b), pp. 33

  • R. Kallenbach et al., Space Sci. Rev. 85, 357 (1998)

    Article  ADS  Google Scholar 

  • G.M. Mason et al., Space Sci. Rev. 86, 409 (1998)

    Article  ADS  Google Scholar 

  • D.J. McComas et al., Space Sci. Rev. 86, 563 (1998)

    Article  ADS  Google Scholar 

  • R.A. Mewaldt, R.C. Ogliore, G. Gloeckler, G.M. Mason, in R. Wimmer-Schweingruber (ed.), Solar and galactic composition. AIP Conf. Proc. 598, 393–398 (2001)

  • R.O. Pepin, R.H. Becker, D.J. Schlutter, Geochimica et Cosmochimica Acta 63, 2145 (1999)

    Article  ADS  Google Scholar 

  • R.O. Pepin, R.L. Palma, D.J. Schlutter, Meteorit. Planet. Sci. 35, 495 (2000)

    Article  ADS  Google Scholar 

  • D.B. Reisenfeld et al., Space Sci. Rev. this volume (2007)

  • C.W. Smith et al., Space Sci. Rev. 86, 613 (1998)

    Article  ADS  Google Scholar 

  • E.C. Stone et al., Space Sci. Rev. 86, 357 (1998a)

    Article  ADS  Google Scholar 

  • E.C. Stone et al., Space Sci. Rev. 96, 285 (1998b)

    Article  ADS  Google Scholar 

  • A.S. Tamhane, J.K. Agrawal, Earth Planet. Sci. Lett. 42, 243 (1979)

    Article  ADS  Google Scholar 

  • R. Wieler, Space Sci. Rev. 85, 303 (1998)

    Article  ADS  Google Scholar 

  • R. Wieler, H. Baur, P. Signer, Geochimica et Cosmochimica Acta 50, 1997 (1986)

    Article  ADS  Google Scholar 

  • R.F. Wimmer-Schweingruber, PhD Thesis, University Bern, 1994

  • R.F. Wimmer-Schweingruber, P. Bochsler, O. Kern, G. Gloeckler, J. Geophys. Res. 103(A9), 20621 (1998)

    Article  ADS  Google Scholar 

  • R.F. Wimmer-Schweingruber, P. Bochsler, in Solar and Galactic Composition. AIP Conf. Proc., ed. by R. Wimmer-Schweingruber, vol. 598 (2001), p. 399

  • J.F. Ziegler, Nucl. Instruments Methods Phys. Res. Sect. B 219(20), 1027 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Grimberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimberg, A., Burnett, D.S., Bochsler, P. et al. Composition of Light Solar Wind Noble Gases in the Bulk Metallic Glass flown on the Genesis Mission. Space Sci Rev 130, 293–300 (2007). https://doi.org/10.1007/s11214-007-9150-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-007-9150-1

Keywords

Navigation