Space Science Reviews

, Volume 128, Issue 1–4, pp 433–506 | Cite as

OSIRIS – The Scientific Camera System Onboard Rosetta

  • H. U. Keller
  • C. Barbieri
  • P. Lamy
  • H. Rickman
  • R. Rodrigo
  • K.-P. Wenzel
  • H. Sierks
  • M. F. A’Hearn
  • F. Angrilli
  • M. Angulo
  • M. E. Bailey
  • P. Barthol
  • M. A. Barucci
  • J.-L. Bertaux
  • G. Bianchini
  • J.-L. Boit
  • V. Brown
  • J. A. Burns
  • I. Büttner
  • J. M. Castro
  • G. Cremonese
  • W. Curdt
  • V. Da Deppo
  • S. Debei
  • M. De Cecco
  • K. Dohlen
  • S. Fornasier
  • M. Fulle
  • D. Germerott
  • F. Gliem
  • G. P. Guizzo
  • S. F. Hviid
  • W.-H. Ip
  • L. Jorda
  • D. Koschny
  • J. R. Kramm
  • E. Kührt
  • M. Küppers
  • L. M. Lara
  • A. Llebaria
  • A. López
  • A. López-Jimenez
  • J. López-Moreno
  • R. Meller
  • H. Michalik
  • M. D. Michelena
  • R. Müller
  • G. Naletto
  • A. Origné
  • G. Parzianello
  • M. Pertile
  • C. Quintana
  • R. Ragazzoni
  • P. Ramous
  • K.-U. Reiche
  • M. Reina
  • J. Rodríguez
  • G. Rousset
  • L. Sabau
  • A. Sanz
  • J.-P. Sivan
  • K. Stöckner
  • J. Tabero
  • U. Telljohann
  • N. Thomas
  • V. Timon
  • G. Tomasch
  • T. Wittrock
  • M. Zaccariotto
Article

Abstract

The Optical, Spectroscopic, and Infrared Remote Imaging System OSIRIS is the scientific camera system onboard the Rosetta spacecraft (Figure 1). The advanced high performance imaging system will be pivotal for the success of the Rosetta mission. OSIRIS will detect 67P/Churyumov-Gerasimenko from a distance of more than 106 km, characterise the comet shape and volume, its rotational state and find a suitable landing spot for Philae, the Rosetta lander. OSIRIS will observe the nucleus, its activity and surroundings down to a scale of ~2 cm px−1. The observations will begin well before the onset of cometary activity and will extend over months until the comet reaches perihelion. During the rendezvous episode of the Rosetta mission, OSIRIS will provide key information about the nature of cometary nuclei and reveal the physics of cometary activity that leads to the gas and dust coma.

OSIRIS comprises a high resolution Narrow Angle Camera (NAC) unit and a Wide Angle Camera (WAC) unit accompanied by three electronics boxes. The NAC is designed to obtain high resolution images of the surface of comet 67P/Churyumov-Gerasimenko through 12 discrete filters over the wavelength range 250–1000 nm at an angular resolution of 18.6 μrad px−1. The WAC is optimised to provide images of the near-nucleus environment in 14 discrete filters at an angular resolution of 101 μrad px−1. The two units use identical shutter, filter wheel, front door, and detector systems. They are operated by a common Data Processing Unit. The OSIRIS instrument has a total mass of 35 kg and is provided by institutes from six European countries.

Keywords

Rosetta OSIRIS camera imaging system spectroscopic cometary activity 67P/Churyumov-Gerasimenko Narrow Angle Camera Wide Angle Camera 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbey, A., Holland, A., Lumb, D., and McCarthy, K.: 1991, Proceedings ESA Electronic Comp. Conference, ESA SEE-N91, p. 307.Google Scholar
  2. Adams, J. B.: 1974, J. Geophys. Res. 79, 4829.ADSCrossRefGoogle Scholar
  3. A’Hearn, M. F., Belton, M. J. S., Delamere, W. A., Kissel, J., Klaasen, K. P., McFadden, L. A., et al.: 2005, Science 310, 258.CrossRefADSGoogle Scholar
  4. Bessell, M. S.: 1999, Publ. Astron. Soc. Pacific 111, 1426.CrossRefADSGoogle Scholar
  5. Birk, M.: 1992, SUMER DPU Command Language (SCL), DPU-IF-E-0200-01-KT, Kayser-Threde GmbH, Munich.Google Scholar
  6. Brunello, P., Peron, F., Barbieri, C., and Fornasier, S.: 2000, in Fischer, R. E., Johnson, R. B., Smith W. J., and Swatner W. H. (eds.), Current Development in Lens Design and Optical Systems Engineering, SPIE 4093, p. 79–88.Google Scholar
  7. Calvel, B., Castel, D., Standarovski, E., Rousset, G., and Bougon, M.: 1999, 3785, 56.Google Scholar
  8. Campbell, D. B., Harmon, J. K., and Shapiro, I. I.: 1989, Astrophys. J. 338, 1094.CrossRefADSGoogle Scholar
  9. Christen, A., Wiest, R., Rastetter, P., Weih, E., Fichna, T., Brüggemann, M., et al.: 2000, Proceedings DASIA 2000, ESA SP-457, p. 199–210.Google Scholar
  10. Colwell, J. E.: 1997, Icarus 125(2), 406.CrossRefADSGoogle Scholar
  11. Dale, C.: 1993, IEEE Trans. Nucl. Sci. 40(6), 1628.CrossRefMathSciNetADSGoogle Scholar
  12. Debei, S., Fornasier, S., Ramous, P., Barbieri, C., Da Deppo, V., Brunello, P., et al.: 2001, UV/EUV and Visible Space Instrumentation for Astronomy and Solar Physics, SPIE 4498, p. 324–334.Google Scholar
  13. Divine, N., Fechtig, H., Gombosi, T. I., Hanner, M. S., Keller, H. U., Larson, S. M., et al.: 1986, Space Sci. Rev. 43, 1.CrossRefADSGoogle Scholar
  14. Dohlen, K., Saisse, M., Claeysen, G., Lamy, P., and Boit, J.-L.: 1996, Opt. Eng. 35, 1150.CrossRefADSGoogle Scholar
  15. Donn, B.: 1991, in Comets in the Post-Halley Era I, Newburn, R. L., and Rahe, J. (eds.), Kluwer Academic Publishers, p. 335–359.Google Scholar
  16. Fichna, T., Gärtner, F., Gliem, F., and Rombeck, F.: 1998, Proceedings FTCS-28, Munich, p. 408–413.Google Scholar
  17. Gutiérrez, P. J., Ortiz, J. L, Rodrigo, R., and López-Moreno, J. J.: 2000, Astron. Astrophys. 355,809.ADSGoogle Scholar
  18. Gutiérrez, P. J., Jorda, L., Samarasinha, N. H., and Lamy, P.: 2005, Planet Space Sci. 53, 1135.CrossRefADSGoogle Scholar
  19. Hamuy, M., Walker, A. R., Suntzeff, B., Gigoux, P., Heathcote, S. R., and Phillips, M. M.: 1992, PASP, 104, 533.CrossRefADSGoogle Scholar
  20. Hamuy, M., Walker, A. R., Suntzeff, N. B., Gigoux, P., Heathcote, S. R., and Phillips, M. M.: 1994, PASP, 106, 566.CrossRefADSGoogle Scholar
  21. Hapke, B.: 1993, Theory of Reflectance and Emittance Spectroscopy, Cambridge University Press, Cambridge, New York, Melbourne.Google Scholar
  22. Holland, A., Abbey, D., Lumb, D., and McCarthy, K.: 1990, SPIE 1344, 378.CrossRefADSGoogle Scholar
  23. Hopkinson, G. R.: 1989, IEEE Trans. Nucl. Sci. 36(6), 1865.CrossRefADSGoogle Scholar
  24. Huebner, W. F., Boice, D. C., Reitsema, H. J., Delamere, W. A., and Whipple, F. L.: 1988, Icarus 76, 78.CrossRefADSGoogle Scholar
  25. Keller, H. U., Kramm, R., and Thomas, N.: 1988, Nature 331, 227.CrossRefADSGoogle Scholar
  26. Keller, H. U.: 1989, ESA Physics and Mechanics of Cometary Materials, p. 39–45.Google Scholar
  27. Keller, H. U., Knollenberg, J., and Markiewicz, W. J.: 1994, Planet. Space Sci. 42(5), 367.CrossRefADSGoogle Scholar
  28. Keller, H. U., Curdt, W., Kramm, J. R., and Thomas, N.: 1995, in Reinhard, R., and Battrick, B. (eds.), Images of the nucleus of comet Halley, ESA SP-1127.Google Scholar
  29. Keller, H. U., Britt, D., Buratti, B. J., and Thomas, N., 2004, in M. C. Festou, H. U. Keller, and H. A. Waever (eds.), Comets II, University of Arizona Press, Tucson, p. 211–222.Google Scholar
  30. Keller, H. U., Jorda, L., Küppers, M., Gutiérrez, P. J., Hviid, S. F., Knollenberg, J., et al.: 2005, Science 310, 281.CrossRefADSGoogle Scholar
  31. Kramm, J. R., and Keller, H. U.: 2000, in Optical Detectors for Astronomy II, Amico, P., and Beletic, J. W. (eds.), Kluwer Academic Publishers, p. 55–62.Google Scholar
  32. Kramm, J. R, Sierks, H., Barthol, P., Müller, R., Tomasch, G., and Germerott, D.: 2003, Benefit from annealing proton irradiation defects on the OSIRIS CCDs, MPAE Report MPAE-W-472-03-02, Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, Germany.Google Scholar
  33. Kramm, J. R., Keller, H. U., Müller, R., Germerott, D., and Tomasch, G.: 2004, in Scientific Detectors for Astronomy — The Beginning of a New Era, Amico, P., Beletic, J. W., and Beletic, J. E. (eds.), Kluwer Academic Publishers, p. 131–135.Google Scholar
  34. Kührt, E. and Keller, H. U.: 1994, Icarus 109, 121.CrossRefADSGoogle Scholar
  35. Kührt, E.: 2002, Earth, Moon and Planets 90(1), 61.CrossRefADSGoogle Scholar
  36. Küppers, M., Bertini, I., Fornasier, S., Gutiérrez, P. J., Hviid, S. F., Jorda, L., et al.: 2005, Nature 437, 987.CrossRefADSGoogle Scholar
  37. Landolt, A. U.: 1992, Astron. J. 104, 340.CrossRefADSGoogle Scholar
  38. McDonnell, J. A. M., Lamy, P. L., and Pankiewicz, G. S.: 1991, in Newburn, R. L., Neugebauer, M., and Rahe, J. H. (eds.), Comets in the Post-Halley Era, Kluwer Academic Publishers, p. 1043–1073.Google Scholar
  39. Naletto, G., Da Deppo, V., Pelizzo, M. G., Ragazzoni, R., and Marchetti, E.: 2002, Appl. Opt. 41(7), 1446.CrossRefADSGoogle Scholar
  40. Naletto, G., Boscolo, A., Wyss, J., and Quaranta, A.: 2003, Appl. Opt. 42(19), 3970.CrossRefADSGoogle Scholar
  41. Possnert, G., Lagerros, J., and Rickman, H.: 1999, in Advances in Optical Interference Coatings, SPIE 3738, p. 428–435.Google Scholar
  42. Richter, K., and Keller, H. U.: 1995, Icarus 114, 355.CrossRefADSGoogle Scholar
  43. Rodionov, A. V., Jorda, L., Jones, G. H., Crifo, J. F., Colas, F., and Lecacheux, J.: 1998, Icarus 136, 232–267.CrossRefADSGoogle Scholar
  44. Sagdeez, R. Z., Smith, B., Szego, K., Larson, S., Toth, I., Merenyi, E., et al.: 1987, Astron. Astrophys. 187, 835.ADSGoogle Scholar
  45. Schleicher, D. G., Millis, R. L., and Birch, P. V.: 1998, Icarus 132(2), 397.CrossRefADSGoogle Scholar
  46. Simonelli, D. P., Thomas, P. C., Carcich, B. T., and Veverka, J.: 1993, Icarus 103, 49.CrossRefADSGoogle Scholar
  47. Smith, B., Szego, K., Larson, S., Merenyi, E., Toth, I., Sagdeev, R. Z., et al.: 1986, in Proceedings of the 20th ESLAB Symposium on the Exploration of Halley’s Comet, Battrick, B., Rolfe, E. J., and Richard, R. (eds.), ESA SP-250, p. 327–331.Google Scholar
  48. Thomas, N., and Keller, H. U.: 1987, Astron. Astrophys. 187, 843.ADSGoogle Scholar
  49. Thomas, N., Boice, D. C., Huebner, W. F., and Keller, H. U.: 1988, Nature 332, 51.CrossRefADSGoogle Scholar
  50. Thomas, P. C., Veverka, J., Simonelli, D., Helfenstein, P., Carcich, B., Belton, M. J. S., et al.: 1994, Icarus 107, 23.CrossRefADSGoogle Scholar
  51. Thomas, P. C., Black, G. J., and Nicholson, P. D.: 1995, Icarus 117, 128.CrossRefADSGoogle Scholar
  52. Thomas, N., Keller, H. U., Arijs, E., Barbieri, C., Grande, M., Lamy, P., et al.: 1998, Adv. Space Res. 21(11), 1505.CrossRefADSGoogle Scholar
  53. Tomasch, G., Harboe-Sø rensen, R., Müller, R., and Tzscheetzsch, T.: 2000, in IEEE Nuclear and Space Radiation Effects Conference, IEEE 00TH8527, p. 26–31.Google Scholar
  54. Tsou, P., Brownlee, D. E., Anderson, J. D., Bhaskaran, S., Cheuvront, A. R., Clark, B. C., et al.: 2004, J. Geophys. Res. 109, E12S01.CrossRefGoogle Scholar
  55. Vilas, F.: 1994, Icarus 111, 456.CrossRefADSGoogle Scholar
  56. Weissman, P. R.: 1986, Nature 320, 242.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • H. U. Keller
    • 1
  • C. Barbieri
    • 2
  • P. Lamy
    • 3
  • H. Rickman
    • 4
  • R. Rodrigo
    • 5
  • K.-P. Wenzel
    • 6
  • H. Sierks
    • 1
  • M. F. A’Hearn
    • 7
  • F. Angrilli
    • 2
  • M. Angulo
    • 8
  • M. E. Bailey
    • 9
  • P. Barthol
    • 1
  • M. A. Barucci
    • 10
  • J.-L. Bertaux
    • 11
  • G. Bianchini
    • 2
  • J.-L. Boit
    • 3
  • V. Brown
    • 5
  • J. A. Burns
    • 12
  • I. Büttner
    • 1
  • J. M. Castro
    • 5
  • G. Cremonese
    • 2
    • 20
  • W. Curdt
    • 1
  • V. Da Deppo
    • 2
    • 22
  • S. Debei
    • 2
  • M. De Cecco
    • 2
    • 23
  • K. Dohlen
    • 3
  • S. Fornasier
    • 2
  • M. Fulle
    • 13
  • D. Germerott
    • 1
  • F. Gliem
    • 14
  • G. P. Guizzo
    • 2
    • 21
  • S. F. Hviid
    • 1
  • W.-H. Ip
    • 15
  • L. Jorda
    • 3
  • D. Koschny
    • 6
  • J. R. Kramm
    • 1
  • E. Kührt
    • 16
  • M. Küppers
    • 1
  • L. M. Lara
    • 5
  • A. Llebaria
    • 3
  • A. López
    • 8
  • A. López-Jimenez
    • 5
  • J. López-Moreno
    • 5
  • R. Meller
    • 1
  • H. Michalik
    • 14
  • M. D. Michelena
    • 8
  • R. Müller
    • 1
  • G. Naletto
    • 2
  • A. Origné
    • 3
  • G. Parzianello
    • 2
  • M. Pertile
    • 2
  • C. Quintana
    • 8
  • R. Ragazzoni
    • 2
    • 20
  • P. Ramous
    • 2
  • K.-U. Reiche
    • 14
  • M. Reina
    • 8
  • J. Rodríguez
    • 5
  • G. Rousset
    • 3
  • L. Sabau
    • 8
  • A. Sanz
    • 17
  • J.-P. Sivan
    • 18
  • K. Stöckner
    • 14
  • J. Tabero
    • 8
  • U. Telljohann
    • 6
  • N. Thomas
    • 19
  • V. Timon
    • 8
  • G. Tomasch
    • 1
  • T. Wittrock
    • 14
  • M. Zaccariotto
    • 2
  1. 1.Max-Planck-Institut für Sonnensystemforschung, 2Katlenburg-LindauGermany
  2. 2.CISASUniversity of PadovaPadovaItaly
  3. 3.Laboratoire d’Astrophysique de MarseilleMarseilleFrance
  4. 4.Department of Astronomy and Space PhysicsUppsalaSweden
  5. 5.Instituto de Astrofísica de Andalucía – CSICGranadaSpain
  6. 6.Research and Scientific Support Department, ESTECNoordwijkThe Netherlands
  7. 7.Department of AstronomyUniversity of MarylandMarylandUSA
  8. 8.Instituto Nacional de Técnica AeroespacialTorrejon de ArdozSpain
  9. 9.Armagh ObservatoryCollege HillArmaghNorthern Ireland
  10. 10.Observatoire de Paris – MeudonMeudonFrance
  11. 11.Service d’Aéronomie du CNRSVerrière-le-BuissonFrance
  12. 12.Cornell UniversityIthacaUSA
  13. 13.Osservatorio Astronomico de TriesteTriesteItaly
  14. 14.Institut für Datentechnik und KommunikationsnetzeBraunschweigGermany
  15. 15.Institute of Space ScienceNational Central UniversityChung LiTaiwan
  16. 16.Institut für Planetenforschung, DLRBerlin-AdlershofGermany
  17. 17.Universidad Politécnica de MadridMadridSpain
  18. 18.Observatoire de Haute-ProvenceSaint Michel l’ObservatoireFrance
  19. 19.Physikalisches Institut der Universität BernBernSwitzerland
  20. 20.INAF, Osservatorio AstronomicoPadovaItaly
  21. 21.Carlo Gavazzi SpaceMilanoItaly
  22. 22.CNR – INFM LuxorPadovaItaly
  23. 23.DIMSUniversity of TrentoTrentoItaly

Personalised recommendations