Space Science Reviews

, Volume 128, Issue 1–4, pp 599–627 | Cite as

Rosetta Radio Science Investigations (RSI)

  • Martin Pätzold
  • Bernd Häusler
  • Kaare Aksnes
  • John D. Anderson
  • Sami W. Asmar
  • Jean-Pierre Barriot
  • Michael K. Bird
  • Hermann Boehnhardt
  • Werner Eidel
  • Eberhardt Grün
  • Wing H. Ip
  • Essam Marouf
  • Trevor Morley
  • Fritz M. Neubauer
  • Hans Rickman
  • Nicolas Thomas
  • Bruce T. Tsurutani
  • Max K. Wallis
  • N. C. Wickramasinghe
  • Eirik Mysen
  • Oystein Olson
  • Stefan Remus
  • Silvia Tellmann
  • Thomas Andert
  • Ludmila Carone
  • Markus Fels
  • Christina Stanzel
  • Iris Audenrieth-Kersten
  • Alexander Gahr
  • Anna-Liane Müller
  • Dusan Stupar
  • Christina Walter
Article

Abstract

The Rosetta spacecraft has been successfully launched on 2nd March 2004 to its new target comet 67 P/Churyumov-Gerasimenko. The science objectives of the Rosetta Radio Science Investigations (RSI) experiment address fundamental aspects of cometary physics such as the mass and bulk density of the nucleus, its gravity field, its interplanetary orbit perturbed by nongravitational forces, its size and shape, its internal structure, the composition and roughness of the nucleus surface, the abundance of large dust grains, the plasma content in the coma and the combined dust and gas mass flux. The masses of two asteroids, Steins and Lutetia, shall be determined during flybys in 2008 and 2010, respectively. Secondary objectives are the radio sounding of the solar corona during the superior conjunctions of the spacecraft with the Sun during the cruise phase.

The radio carrier links of the spacecraft Telemetry, Tracking and Command (TT&C) subsystem between the orbiter and the Earth will be used for these investigations. An Ultrastable oscillator (USO) connected to both transponders of the radio subsystem serves as a stable frequency reference source for both radio downlinks at X-band (8.4 GHz) and S-band (2.3 GHz) in the one-way mode. The simultaneous and coherent dual-frequency downlinks via the High Gain Antenna (HGA) permit separation of contributions from the classical Doppler shift and the dispersive media effects caused by the motion of the spacecraft with respect to the Earth and the propagation of the signals through the dispersive media, respectively.

The investigation relies on the observation of the phase, amplitude, polarization and propagation times of radio signals transmitted from the spacecraft and received with ground station antennas on Earth. The radio signals are affected by the medium through which the signals propagate (atmospheres, ionospheres, interplanetary medium, solar corona), by the gravitational influence of the planet on the spacecraft and finally by the performance of the various systems involved both on the spacecraft and on ground.

Keywords

Rosetta comets 67 P/Churyumov-Gerasimenko radio-science 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksnes, K., and Grav, T.: 2005, Astron. Astrophys. 441, 815.CrossRefADSGoogle Scholar
  2. Anderson, J. D., Krisher, T., and Borutzki, S., et al.: 1987, Astrophys. J. 323, L141.CrossRefADSGoogle Scholar
  3. Anderson, J. D., Armstrong, J. W., Campbell, J. K., Estabrook, F. B., Krisher, T. P., and Lau, E. L.: 1992, Space Sci. Rev. 60, 591.CrossRefADSGoogle Scholar
  4. Anderson, J. D., Lau, E. L., Sjogren, W. L., Schubert, G., and Moore, W. B.: 1997, Science 176, 1236.CrossRefADSGoogle Scholar
  5. Anderson, J. D., Schubert, G., Jacobson, R. A., Lau, E. L., Moore, W. B., and Palguta, J. L.: 2004, Science 305, 989.CrossRefADSGoogle Scholar
  6. Andreev, V. I., and Gavrik, A. L.: 1990, Kosmicheskie Issledovaniya 28, 293.ADSGoogle Scholar
  7. Barucci, M. A., Fulchignoni, M., Fornasier, S., Dotto, E., Vernazza, P., Birlan, M., et al.: 2005, Astron. Astrophys. 430, 313.CrossRefADSGoogle Scholar
  8. Bird, M. K., Volland, H., Pätzold, M., Edenhofer, P., Asmar, S. W., and Brenkle, J. P.: 1994, Astrophys. J. 426, 373.CrossRefADSGoogle Scholar
  9. Bird, M. K., Allison, M., Asmar, S. W., Atkinson, D. H., Avruch, I. M., Dutta-Roy, R., et al.: 2005, Nature 438, 800.CrossRefADSGoogle Scholar
  10. Boehnhardt, H., Babion, J., and West, R. M.: 1996, Astron. Astrophys. 320, 642.ADSGoogle Scholar
  11. Boehnhardt, H., Delahodde, C., Sekiguchi, T., Tozzi, G. P., Amestica, R., Hainaut, O., et al.: 2002, Astron. Astrophys. 387, 1107.Google Scholar
  12. Campbell, D. B., Harmon, J. K., and Shapiro, I. I.: 1989, Astrophys. J. 338, 1094.CrossRefADSGoogle Scholar
  13. Dziak-Jankowska, B., Leliwa-Kopystynski, J., and Krolikowska, M.: 2005, Global evolution of short-period comets. 67P/Churyumov-Gerasimenko case, IAU Symp. No. 229:Asteroids, Comets, Meteors, Rio de Janeiro 2005, To apper in Earth, Moon and Planets.Google Scholar
  14. Eshleman, V. R.: 1973, Planet. Space Sci. 21, 1521.CrossRefADSGoogle Scholar
  15. Eshleman, V. R., Tyler, G. L., Anderson, J. D., Fjeldbo, G., Levy, G. S., Wood, G. E., et al.: 1977, Space Sci. Rev. 21(2), 207.CrossRefADSGoogle Scholar
  16. Fjeldbo, G.: 1964, Bistatic radar methods for studying planetary ionospheres and surfaces, Stanford Electronics Laboratory, Stanford University, SU-SEL-64.Google Scholar
  17. Fornasier, S., Belskaya, I., Fulchignoni, M., Barucci, M. A., and Barbieri, C.: 2006, Astron. Astrophys. 449, L9.CrossRefADSGoogle Scholar
  18. Gill, E., Montenbruck, O., and Pätzold, M.: 1996, Perturbation forces acting on the Rosetta spacecraft in a close orbit around comet P/Wirtanen, AAS paper 96–150, Houston.Google Scholar
  19. Häusler, B., Pätzold, M., Tyler, G. L., Simpson, R. A., Bird, M. K., Dehant, V., et al.: 2006, Planet. Space Sci. 54(13–14), 1315.Google Scholar
  20. Harmon, J. K., Campbell, D. B., Hine, A. A., Shapiro, I. I., and Marsden, B. G.: 1989, Astrophys. J. 338, 1071.CrossRefADSGoogle Scholar
  21. Harmon, J. K., Ostro, S. J., Benner, L. A. M., Rosema, K. D., Jurgens, R. F., Winkler, R., et al.: 1997, Science 278, 1921.CrossRefADSGoogle Scholar
  22. Howard, H. T., Eshleman, V. R., Hinson, D. P., Kliore, A. J., Lindal, G. F., Woo, R., et al.: 1992, Space Sci. Rev. 60, 565.CrossRefADSGoogle Scholar
  23. Kamoun, P., Campbell, D. B., Ostro, S. J., Pettengill, G. H., and Shapiro, I. I.: 1982, Science 216, 293.CrossRefADSGoogle Scholar
  24. Kamoun, P., Campbell, D., Pettengill, G., and Shapiro, I.: 1998, Planet. Space Sci. 47, 23.CrossRefADSGoogle Scholar
  25. Kliore, A. J., Anderson, J. D., Armstrong, J. W., Asmar, S. W., Hamilton, C. L., Rappaport, N. J., et al.: 2004, The Cassini-Huygens Mission, Springer, The Netherlands, doi: 10.1007/1-4020-3874-7.Google Scholar
  26. Konopliv, A. S., Miller, J. K., Owen, W. M., Yeomans, D. K., Giorgini, J. D., Garmier, R., et al.: 2002, Icarus 160, 289.CrossRefADSGoogle Scholar
  27. Lamy, P. L., Toth, I., Weaver, H., Jorda, L., and Kaasalainen, M.: 2003, Am. Astron. Soc. BAAS 35, 970.ADSGoogle Scholar
  28. Lazzarin, M., Marchi, S., Magrin, S., and Barbieri, C.: 2004, Astron. Astrophys. 425, L25.CrossRefADSGoogle Scholar
  29. Lowry, S. C., Fitzsimmons, A., Jorda, L., Kaasalainen, M., Lamy, P., and Toth, I.: 2006, Am. Astron. Soc. BAAS 38, 492.ADSGoogle Scholar
  30. Marouf, E. A., Tyler, G. L., and Eshleman, V. R.: 1982, Icarus 49, 161.CrossRefADSGoogle Scholar
  31. Marouf, E. A., Tyler, G. L., Zebker, H. A., Simpson, R. A., and Eshleman, V. R.: 1983, Icarus, 54, 189.CrossRefADSGoogle Scholar
  32. Marouf, E. A., and Bird, M. K.: 1995, Rosetta and bistatic-radar detectability of cometary nuclei, (Abstract) AGU Fall Meeting, San Francisco, CA, December 11–15, 1995.Google Scholar
  33. Marsden, B. G., and Williams, G. V.: 1995, Catalogue of Cometary Orbits, 10 ed., IAU Central Bureau for Astronomical Telegrams, Cambridge, MA.Google Scholar
  34. Miller, J. K., Williams, B. G., Bollman, W. E., Davis, R. P., Helfrich, C. E., Scheeres, D. J., et al.: 1995, J. Astronaut. Sci. 43, 453.Google Scholar
  35. Miller, J. K., Konopliv, A. S., Antreasian, P. G., Bordi, J. J., Chesley, S., Helfrich, C. E., et al.: 2002, Icarus 155, 3.CrossRefADSGoogle Scholar
  36. Mueller, B. E. A.: 1992, Asteroids, Comets, Meteors 1991, Lunar and Planetary Institute, Houston, p. 425.Google Scholar
  37. Muhleman, D. O., and Anderson, J. D.: 1981, Astrophys. J. 247, 1093.CrossRefADSGoogle Scholar
  38. Mysen, E., and Aksnes, K.: 2005, Astron. Astrophys. 443, 691.CrossRefADSGoogle Scholar
  39. Mysen, E., and Aksnes, K.: 2006, Astron. Astrophys. 445, 1143.CrossRefADSGoogle Scholar
  40. Mysen, E., Olsen, Ø., and Aksnes, K.: 2006, Plan. Space Sci. 54(8), 750.ADSGoogle Scholar
  41. Olsen, Ø.: 2006, Astron. Astrophys. 449, 821.MATHCrossRefADSGoogle Scholar
  42. Ostro, S. J.: 1985, Pub. Astron. Soc. Pacific 97, 877.CrossRefADSGoogle Scholar
  43. Ostro, S. J., Campbell, D. B., Simpson, R. A., Hudson, R. S., Chandler, J. F., Rosema, K. D., et al.: 1992, J. Geophys. Res. 97, 18,227–18,244.ADSCrossRefGoogle Scholar
  44. Pätzold, M., Bird, M. K., Volland, H., Edenhofer, P., and Buschert, H.: 1991a, Z. Flugwiss. Weltraumforsch. 15, 89.Google Scholar
  45. Pätzold, M., Bird, M. K., Volland, H., Edenhofer, P., and Buschert, H.: 1991b, Z. Flugwiss. Weltraumforsch. 15, 159.Google Scholar
  46. Pätzold, M., Bird, M. K., and Edenhofer, P.: 1993, J. Geophys. Res. 98, 20911.Google Scholar
  47. Pätzold, M., Bird, M. K., Edenhofer, P., Asmar, S. W., and McElrath, T. P.: 1995, Geophys. Res. Lett. 22, 3313.CrossRefADSGoogle Scholar
  48. Pätzold, M., Neubauer, F. M., Andreev, V. E., and Gavrik, A. I.: 1997, J. Geophys. Res. 102, 2213.CrossRefADSGoogle Scholar
  49. Pätzold, M., Häusler, B., Wennmacher, A., Aksnes, K., Anderson, J. D., Asmar, S. W., et al.: 2001a, Astron. Astrophys. 375, 651.CrossRefADSGoogle Scholar
  50. Pätzold, M., Wennmacher, A., Häusler, B., Eidel, W., Morley, T., Thomas, N., et al.: 2001b, Astron. Astrophys. 370, 1122.CrossRefADSGoogle Scholar
  51. Pätzold, M., and 21 C-Authors: 2004, MaRS: Mars Express Orbiter Radio Science, ESA-SP 1240, 141.ADSGoogle Scholar
  52. Pätzold, M., and 30 Co-Authors: 2006, MaRS: the Mars Express Radio Science Experiment, ESA-SP 1291, in press.Google Scholar
  53. Richter, K., and Keller, H. U.: 1995, Icarus 14, 355.CrossRefADSGoogle Scholar
  54. Scheeres, D. J.: 1995, J. Astronaut. Sci. 43, 427.Google Scholar
  55. Scheeres, D. J., Marzari, F., Tomasella, L., and Vanzani, V: 1998, Plan. Space Sci. 46, 649.CrossRefADSGoogle Scholar
  56. Simpson, R. A., and Tyler, G. L.: 1981, Icarus 46, 361.CrossRefADSGoogle Scholar
  57. Simpson, R. A., Tyler, G. L. Pätzold, M., and Häusler, B.: 2006, J. Geophys. Res. in press.Google Scholar
  58. Standish, E. M.: 1993, Astron. J. 105(5), 2000.CrossRefADSGoogle Scholar
  59. Stern, S. A., and Spencer, J.: 2003, Moon and Planets 92, 477.CrossRefGoogle Scholar
  60. Tancredi, G., Fernández, J. A., Rickman, H., and Licandro, J.: 2000, Astron. Astrophys. Suppl. 146, 73.CrossRefADSGoogle Scholar
  61. Tapley, B., Ries, J., Bettadpur, S., Chambers, D., Cheng, M., Condi, F., et al.: 2005, “GGM02 – An improved Earth gravity field model from GRACE,” Journal of Geodesy, DOI 10.1007/s00190-005-0480-z.Google Scholar
  62. Tyler, G. L.: 1968, J. Geophys. Res. 73, 7609.ADSGoogle Scholar
  63. Tyler, G. L.: 1987, Radio propagation experiments in the outer solar system with Voyager, Proceedings of the IEEE 75(10), 1404.ADSGoogle Scholar
  64. Tyler, G. L., Eshleman, V. R., Fjeldbo, G., Howard, H. T., and Peterson, A. M.: 1967Science, 157(3785), 193.CrossRefADSGoogle Scholar
  65. Tyler, G. L., and Howard, H. T.: 1973, J. Geophys. Res. 78, 4852.ADSGoogle Scholar
  66. Tyler, G. L., Marouf, E. A., Simpson, R. A., Zebker, H. A., and Eshleman, V. R.: 1983, Icarus, 54, 160.CrossRefADSGoogle Scholar
  67. Tyler, G. L.: 1987, Radio propagation experiments in the outer solar system with Voyager, Proceedings of the IEEE 75, 1404.ADSCrossRefGoogle Scholar
  68. Tyler, G. L., Balmino, G., Hinson, D. P., Sjogren, W. L., Smith, D. E., Woo, R., et al.: 1992, J. Geophys. Res. 97, 7759.CrossRefADSGoogle Scholar
  69. Tyler, G. L., Simpson, R. A., Maurer, M. J., and Holmann, E.: 1992, J. Geophys. Res. 97, 13115.CrossRefADSGoogle Scholar
  70. Yakovlev, O. I., and Efimov, A. I.: 1966, Dokladi Akademii Nauk SSSR 174, 583.Google Scholar
  71. Yeomans, D. K.: 1986, Physical interpretations from the motions of comets Halley and Giacobini-Zinner, ESA SP-250 II, p. 419.Google Scholar
  72. Yeomans, D. K., Ananda, M., Sjogren, W. L., and Wood, L. J.: 1981, J. Astronautical Sci. 29, 19.ADSGoogle Scholar
  73. Yeomans, D. K., Barriot, J.-P., Dunham, D. W., Farquhar, R. W., Giorgini, J. D., Helfrich, C. E., et al.: 1997, Science 278, 2106.CrossRefADSGoogle Scholar
  74. Von Oertzen, J.: 2003, Global modelling of comets: Nucleus, neutral and ionized coma of comets 67P/Churyumov-Gerasimenko and 46 P/Wirtanen, Mitteilungen aus dem Institut für Geophysik und Meteorologie Heft 156, Köln.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Martin Pätzold
    • 1
  • Bernd Häusler
    • 2
  • Kaare Aksnes
    • 3
  • John D. Anderson
    • 4
  • Sami W. Asmar
    • 4
  • Jean-Pierre Barriot
    • 5
  • Michael K. Bird
    • 6
  • Hermann Boehnhardt
    • 7
  • Werner Eidel
    • 2
  • Eberhardt Grün
    • 8
  • Wing H. Ip
    • 9
  • Essam Marouf
    • 10
  • Trevor Morley
    • 11
  • Fritz M. Neubauer
    • 1
  • Hans Rickman
    • 12
  • Nicolas Thomas
    • 13
  • Bruce T. Tsurutani
    • 4
  • Max K. Wallis
    • 14
  • N. C. Wickramasinghe
    • 14
  • Eirik Mysen
    • 3
  • Oystein Olson
    • 3
  • Stefan Remus
    • 2
  • Silvia Tellmann
    • 1
  • Thomas Andert
    • 1
  • Ludmila Carone
    • 1
  • Markus Fels
    • 1
  • Christina Stanzel
    • 1
  • Iris Audenrieth-Kersten
    • 1
  • Alexander Gahr
    • 1
  • Anna-Liane Müller
    • 1
  • Dusan Stupar
    • 1
  • Christina Walter
    • 1
  1. 1.Institut für Geophysik und MeteorologieUniversität zu KölnKölnGermany
  2. 2.Institut für RaumfahrttechnikUniversität der BundeswehrMünchenGermany
  3. 3.Institute for Theorectical AstrophysicsUniversity of OsloOsloNorway
  4. 4.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  5. 5.GRGS/GTP, CNESToulouseFrance
  6. 6.Argelander Institut für AstronomieUniversität BonnBonnGermany
  7. 7.Max-Planck-Institut für SonnensystemforschungKatlenburg-LindauGermany
  8. 8.Max-Planck-Institut für KernphysikHeidelbergGermany
  9. 9.Institute of AstronomyNational Central UniversityChung-LiTaiwan
  10. 10.Dept. of Electrical EngineeringSan Jose State UniversitySan JoseUSA
  11. 11.ESA-ESOCDarmstadtGermany
  12. 12.Astronomiska ObservatorietUniversity of UppsalaUppsalaSweden
  13. 13.Physikalisches InstitutUniversität BernBernSwitzerland
  14. 14.School of MathematicsUniversity of WalesCardiffUK

Personalised recommendations