Skip to main content
Log in

Theory and Simulation of Reconnection

In memoriam Harry Petschek

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Reconnection is a major commonality of solar and magnetospheric physics. It was conjectured by Giovanelli in 1946 to explain particle acceleration in solar flares near magnetic neutral points. Since than it has been broadly applied in space physics including magnetospheric physics. In a special way this is due to Harry Petschek, who in 1994 published his ground breaking solution for a 2D magnetized plasma flow in regions containing singularities of vanishing magnetic field. Petschek’s reconnection theory was questioned in endless disputes and arguments, but his work stimulated the further investigation of this phenomenon like no other. However, there are questions left open. We consider two of them – “anomalous” resistivity in collisionless space plasma and the nature of reconnection in three dimensions. The CLUSTER and SOHO missions address these two aspects of reconnection in a complementary way -- the resistivity problem in situ in the magnetosphere and the 3D aspect by remote sensing of the Sun. We demonstrate that the search for answers to both questions leads beyond the applicability of analytical theories and that appropriate numerical approaches are necessary to investigate the essentially nonlinear and nonlocal processes involved. Necessary are both micro-physical, kinetic Vlasov-equation based methods of investigation as well as large scale (MHD) simulations to obtain the geometry and topology of the acting fields and flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André, M., Vaivads, A., Buchert, S. C., Fazakerley, A. N., and Lahiff, A.: 2004, ‘Thin electron-scale layers at the magnetopause’, Geophys. Res. Lett. 31, L03803.

    Article  Google Scholar 

  • Axford, W. I.: 1984, ‘Magnetic field reconnection’, in E. W. H. Jr. (ed.), Reconnection in Space and Laboratory Plasma, Vol. 30 of Geophysical Monograph Series, AGU, Washington D. C., p. 4.

    Google Scholar 

  • Bale, S. D., Mozer, F. S., and Phan, T.: 2002, ‘Observation of lower hybrid drift instability in the diffusion region at a reconnecting magnetopause’, Geophys. Res. Lett. 29, 2180.

    Article  ADS  Google Scholar 

  • Biskamp, D.: 1986, ‘Magnetic reconnection via current sheets’, Phys. Fluids 29, 1520.

    Article  MATH  ADS  Google Scholar 

  • Brown, D. S., Parnell, C. E., Deluca, E., Golub, L., and McMullen, R. A.: 2001, ‘The magnetic structure of a coronal X-ray bright point’, Solar Phys. 201, 305.

    Article  ADS  Google Scholar 

  • Büchner, J.: 1999, ‘Three-dimensional magnetic reconnection in astrophysical plasmas - kinetic approach’, Astrophys. Space Sci. 264(1–4), 25.

    MATH  ADS  Google Scholar 

  • Büchner, J.: 2005, ‘Locating reconnection sites in the solar atmosphere’, in D. Danesy, P. K. U., A. D. Groof, and J. Andries (eds.), Proc. of the 11th European Solar Physics Meeting The Dynamic Sun: Challenges for Theory and Observations, 11–16 September 2005, Leuven, Belgium. 2200 AG Noordwijk, The Netherlands.

    Google Scholar 

  • Büchner, J., and Daughton, W.: 2006, ‘Role of current-aligned instabilities’, in E. Priest and J. Birn (eds.), Magnetic Reconnection, Cambridge, UK: Cambridge University Press, pp. 145.

    Google Scholar 

  • Büchner, J., and Elkina, N.: 2006a, ‘Anomalous resistivity of current-driven isothermal plasmas due to phase space structuring’, Phys. Plasmas 13, 082304, doi: 10.1063/1.2209611, 2006.

  • Büchner, J., and Elkina, N.: 2006b, ‘Vlasov code simulation of anomalous resistivity’, Space Sci. Rev. 121(1-4), 237, doi: 10.1007/s11214-006-6542-6, 2006.

  • Büchner, J., and Nikutowski, B.: 2005, ‘Physically consistent simulation of chromospheric and coronal magnetic fields’. in D. Innes and D. Danesy (eds.), Chromospheric and Coronal Magnetic Fields, Proc. CCMAG Lindau, Vol. ESA-SP 596, Noordwijk: ESA, pp. 1.

    Google Scholar 

  • Büchner, J., Nikutowski, B., and Otto, A.: 2004a, ‘Coronal heating by transition region reconnection’, in J. Ireland and R. W. Walsh (eds.), Proc. of the SOHO15 Coronal Heating Workshop, 6–9 September 2004. Noordwijk, pp. 23.

  • Büchner, J., Nikutowski, B., and Otto, A.: 2004b, ‘Magnetic coupling of photosphere and corona: MHD simulation for multi-wavelength observations’, in A. V. Stepanov, E. E. Benevolenskaya, and A. G. Kosovichev (eds.), Multi-Wavelength Investigations of Solar Activity, Vol. 223 of Proceedings IAU Symposium. Cambridge, UK, pp. 353.

  • Büchner, J., Nikutowski, B., and Otto, A.: 2005, ‘Plasma Acceleration due to Transition Region Reconnection’, in D. Gallagher, J. Horwitz, J. Perez, R. Preece, and J. Quenby (eds.), Particle Acceleration in Astrophysical Plasmas: Geospace and Beyond, AGU monograph, Vol. 156, Washington DC.: AGU, pp. 1.

    Google Scholar 

  • Cattell, C., Crumley, J., Dombeck, J., Wygant, J., and Moser, F. S.: 2002, ‘Polar observations of solitary waves at the Earth's magnetopause,’, Geophys. Res. Lett. 29(5), 1065.

    Article  ADS  Google Scholar 

  • Cattell, C., Dombeck, J., Wygant, J., Drake, J. F., Swisdak, M., Goldstein, M. L., et al.: 2005, W. Keith, A. Fazakerley, M. André, E. Lucek, and A. Balogh: 2005, ‘Cluster observations of electron holes in association with magnetotail reconnection and comparison to simulations’, J. Geophys. Res. 110, A01211.

    Article  Google Scholar 

  • Cattell, C., Dombeck, J., Wygant, J. R., and Hudson, M. K.: 1999, ‘Cluster observations of electron holes in association with magnetotail reconnection and comparison to simulations’, Geophys. Res. Lett. 26, 425.

    Article  ADS  Google Scholar 

  • Coroniti, F. V.: 1985, ‘Space plasma turbulent dissipation - reality or myth?’, Space Sci. Rev. 42, 399.

    Article  ADS  Google Scholar 

  • Davidson, R. C., and Gladd, N. T.: 1975, ‘Anomalous transport properties associated with the lower-hybrid-drift instability’, Phys. Fluids 18(10), 1327.

    Article  ADS  Google Scholar 

  • Demoulin, P., Henoux, J. C., Priest, E. R., and Mandrini, C. H.: 1996, ‘Quasi-Separatrix layers in solar flares. I. Method.’, Astron. Astroph. 308, 643.

    ADS  Google Scholar 

  • Drake, J. F., Swisdak, M., Catell, C., Shay, M. A., Rogers, B. N., and Zeiler, A.: 2003, ‘Formation of electron holes and particle energization during magnetic reconnection’, Science 299(5608), 873.

    Article  ADS  Google Scholar 

  • Dum, C.: 1978, ‘Anomalous heating by ion-sound turbulence’, Phys. Fluids 21, 945.

    Article  MATH  ADS  Google Scholar 

  • Dungey, J. W.: 1953, ‘Conditions for the occurence of electrical discharges in astrophysical systems’, Phil. Mag. 44, 725.

    Google Scholar 

  • Dupree, T. H.: 1970, ‘Theory of resistivity in collisionless plasma’, Phys. Rev. Lett. 25(12), 789.

    Article  ADS  Google Scholar 

  • Elkina, N. V., and Büchner, J.: 2006, ‘A new conservative unsplit method for the solution of the Vlasov equation’, J. Comp. Phys. 213, 862.

    Article  MATH  ADS  Google Scholar 

  • Franz, J., Kintner, P., and Pickett, J.: 1999, ‘Polar Observations of Coherent Electric Field Structures,’, Geophys. Res. Lett. 25(8), 1277.

    Article  ADS  Google Scholar 

  • Galeev, A. A., and Sagdeev, R. Z.: 1984, Handbook of Plasma Physics, Vol. II, Amsterdam: North Holland Physics Publishing.

    Google Scholar 

  • Gary, S.: 1993, Theory of Space Plasma Microinstabilities, Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Giovanelli, R.: 1946, ‘A theory of chromospheric flares’, Nature 158, 81.

    ADS  Google Scholar 

  • Greene, J. M.: 1988, ‘Three-dimensional kinematic reconnection in the presence of field nulls and closed field lines’, J. Geophys. Res. 93, 8583.

    ADS  Google Scholar 

  • Hellinger, P., Trávnícek, P., and Menietti, J.: 2004, ‘Effective collision frequency due to ion-acoustic instability: Theory and simulations’, Geophys. Res. Lett. 31, L10806.

    Article  ADS  Google Scholar 

  • Hesse, M., and Schindler, K.: 1988, ‘A theoretical foundation of general magnetic reconnection’, J. Geophys. Res. 693, 5559.

    ADS  Google Scholar 

  • Horne, R., and Freeman, M.: 2001, ‘A new code for electrostatic simulation by numerical integration of the Vlasov and Ampere equations using MacCormack's method’, J. Comp. Phys. 171, 182.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Lau, Y.-T., and Finn, J.: 1990, ‘Three-dimensional kinematic reconnection in the presence of field nulls and closed field lines’, ApJ 350, 672.

    Article  ADS  MathSciNet  Google Scholar 

  • Longcope, D. W., and Cowley, S. C.: 1996, ‘Current sheet formation along three dimensional magnetic separators’, Phys. Plasmas 3(8), 2885.

    Article  ADS  Google Scholar 

  • Madjarska, M. S., Doyle, J. G., Teriaca, L., and Banerjee, D.: 2002, ‘An EUV Bright Point as seen by Sumer, CDS, MDI and EIT on-board SoHO’, Astron. Astrophys. 398, 775.

    Article  ADS  Google Scholar 

  • Matsumoto, H., Frank, L. A., Omura, Y., and Kojima, H.: 1999, ‘Generation Mechanism of ESW Based on GEOTEIL Plasma Wave Observation, Plasma Observation and Particle Simulation’, Geophys. Res. Lett. 126, 421.

    Article  ADS  Google Scholar 

  • Otto, A., Büchner, J., and Nikutowski, B.: 2006, ‘MHD simulation using force-free extrapolated solar magnetic fields’, Astron. Astrophys., in press.

  • Panov, E., Büchner, J., Fränz, M., Korth, A., Khotyaintsev, Y., Nikutowski, B., et al.: 2006, S. Savin, K.-H. Fornačon, I. Danduras, and H. Rème: 2006, ‘CLUSTER spacecraft observation of a thin current sheet at the Earths magnetopause’, Adv. Space Res., in press.

  • Parker, E. N.: 1957, ‘Sweet's mechanism for merging magnetic fields in conducting fluids’, J. Geophys. Res. 62, 509.

    Article  ADS  Google Scholar 

  • Petschek, H.: 1964, in W. Ness (ed.), AAS/NASA Symposium on the Physics of Solar Flares, Vol. SP-50, Washington, D.C., p. 425.

  • Priest, E. R., and Forbes, T. G.: 2000, Magnetic Reconnection: MHD Theory and Applications, New York: Cambridge Univ. Press.

    MATH  Google Scholar 

  • Priest, E. R., and Titov, V. S.: 1996, ‘Magnetic reconnection at three-dimensional null points’, Phil. Trans. Roy. Soc. 354, 2951.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Schrijver, C., and Title, A.: 2002, ‘The topology of a mixed-polarity potential field, and inferences for the heating of the quiet solar corona’, Sol. Phys. 207.

  • Silin, I., Büchner, J., and Vaivads, A.: 2005, ‘Anomalous resistivity due to nonlinear lower-hybrid drift waves’, Physics of Plasmas 12(6).

  • Somov, B., and Titov, V. S.: 1985, ‘Magnetic reconnection in high-temperature plasma solar flares’, Solar Phys. 102, 79.

    Article  ADS  Google Scholar 

  • Spitzer, L.: 1956, Physics of Fully Ionized Gases, New York: Interscience.

    MATH  Google Scholar 

  • Sweet, P. A.: 1958, in B. Lehnert (ed.), IAU Symp. 6: Electromagnetic Phenomena in Cosmical Physics. New York, p. 123.

  • Titov, V. S., Hornig, G., and Demoulin, P.: 2002, ‘Squashing factor introduced’, J. Geophys. Res. 107, SSH 3, 1.

    Article  Google Scholar 

  • Titov, V. S., G. K., and Neukirch, T.: 2003, ‘Magnetic pinching of hyperbolic flux tubes. I. Basic Estimations’, Astroph. J. 582, 1172.

    Article  ADS  Google Scholar 

  • Treumann, R.: 2001, ‘Origin of resistivity in reconnection’, Earth Planet. Sci. 53, 433.

    Google Scholar 

  • Vasyliunas, V.: 1975, ‘Theoretical models of magnetic field line merging, 1. Fluid Theory’, Rev. Geophys. Space Phys. 13, 303.

    ADS  Google Scholar 

  • Vlasov, A.: 1938, ‘O vibrazionnych swoistwach elektronnowo gasa’, J. Exp. Theoret. Phys. 8, 291 (in Russ.).

    Google Scholar 

  • Watt, C., Horne, R., and Freeman, M.: 2002, ‘Ion-acoustic resistivity in plasmas with similar ion and electron temperatures’, Geophys. Res. Lett. 29(1), 1002.

    Article  ADS  Google Scholar 

  • Wiegelmann, T., and Büchner, J.: 2001, ‘Evolution of magnetic helicity in the course of kinetic magnetic reconnection’, Nonlin. Proc. Geoph. (8), 127.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Büchner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Büchner, J. Theory and Simulation of Reconnection. Space Sci Rev 124, 345–360 (2006). https://doi.org/10.1007/s11214-006-9094-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-006-9094-x

Keywords

Navigation