Skip to main content
Log in

Commonalities Between Ionosphere and Chromosphere

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Three types of processes, occurring in the weakly ionized plasmas of the Earth’s ionosphere as well as in the solar chromosphere, are being compared with each other. The main objective is to elaborate on the differences introduced primarily by the grossly different magnitudes of the densities, both with respect to the neutral and, even more so, to the plasma constituents. This leads to great differences in the momentum coupling from the plasma to the neutral component and becomes clear when considering the direct electric current component transverse to the magnetic field, called “Pedersen current”; in the ionosphere, which has no quasi-static counterpart in the chromosphere. The three classes of processes are related to the dynamical response of the two plasmas to energy influx from below and from above. In the first two cases, the energy is carried by waves. The third class concerns plasma erosion or ablation in the two respective regions in reaction to the injection of high Poynting and/or energetic particle fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonucci, E., Alexander, D., Culhane, J. L., de Jager, C., McNeice, P., Somov, B. U., et al.: 1999, in K. T., Strong, J. L. R. Saba, B. M. Haisch, and J. T. Schmelz (eds.), The Many Faces of the Sun. A Summary of the Results From NASA's Solar Maximum Mission, Springer, Berlin, p. 331.

    Google Scholar 

  • Boehm, M. H., Paschmann, G., Clemmons, J., Haerendel, G., Eliasson, L., and Lundin, R.: 1994, ‘Freja observations of narrow inverted-V electron precipitation by the two-dimensional electron spectrometer’, Geophys. Res. Lett. 21, 1895.

    Article  ADS  Google Scholar 

  • De Pontieu, B., and Haerendel, G.: 1998, ‘Weakly damped Alfvén waves as drivers for spicules’, Astron. Astrophys. 338, 729.

    ADS  Google Scholar 

  • De Pontieu, B., Martens, P. C. H., and Hudson, H. S.: 2001, ‘Chromospheric damping of Alfvén waves’, Astrophys. J. 558, 859.

    Article  ADS  Google Scholar 

  • De Pontieu, B., Erdélyi, R., and Stewart, S. P.: 2004, ‘Solar chromospheric spicules from the leakage of photospheric oscillations and flows’, Nature 430, 536.

    Article  Google Scholar 

  • Dungey, J.: 1959, ‘Effect of a neutral field turbulence in an ionized gas’, J. Geophys. Res. 64, 2188.

    ADS  Google Scholar 

  • De Jager, C.: 1985, ‘Kernel heating and ablation in the impulsive phase of two solar flares’, Sol. Phys. 98, 267.

    Article  ADS  Google Scholar 

  • Erlandsen, R. E., Zanetti, L. J., Acuña, M. H., Eriksson, A. I., Eliasson, L., Boehm, M. H., et al.: 1994, ‘Freja observations of electromagnetic ion cyclotron ELF waves and transverse oxygen ion acceleration on auroral field lines’, Geophys. Res Lett. 21, 1855.

    Article  ADS  Google Scholar 

  • Ergun, R. E., Carlson, C. W., McFadden, J. P., Mozer, F. S., and Strangeway, R. J.: 2000, ‘Parallel electric fields in discrete arcs’, Geophys. Res. Lett. 27, 4053.

    Article  ADS  Google Scholar 

  • Frey, H. U., Haerendel, G., Knudsen, D., Buchert, S., and Bauer, O. H.:1996, ‘Optical and radar observations of the motion of auroral arcs’. J. Atmosph. Terr. Phys. 58, 169.

    Article  Google Scholar 

  • Haerendel, G.: 1992, ‘Weakly-damped Alfvén waves as drivers of chromospheric spicules’. Nature 360, 241.

    Article  ADS  Google Scholar 

  • Haerendel, G.: 1994, ‘Acceleration from field-aligned potential drops’. Ap. J Supp. Series 90, 765.

    Article  ADS  Google Scholar 

  • Haerendel, G.: 1999, ‘Origin and dynamics of thin auroral arcs’. Adv. Space Res. 23, 1637.

    Article  ADS  Google Scholar 

  • Haerendel, G.: 2001, in J. A. M., Bleeker, J. Geiss, and M. C. E. Huber (eds.), ‘The Century of Space Science’, Kluwer Academic Publ., Dordrecht, p. 1007.

    Google Scholar 

  • Hines, C. O.: 1974, The upper atmosphere in motion: ‘A selection of papers with annotsation’, Geophys. Monograph 18, Am. Geophys. Union, Washington D.C.

    Google Scholar 

  • James, S. P., Erdélyi, R., and De Pontieu, B.: 2003, ‘Can ion-neutral damping help to form spicules?’. Astron. Astrophys. 406, 715.

    Article  ADS  Google Scholar 

  • Keiling, A., Wygant, J. R., Cattell, C. A., Mozer, F. S., and Russell, C. T., 2003, ‘The global morphology of wave Poynting flux: Powering the aurora’, Science 299, 383.

    Article  ADS  Google Scholar 

  • McFadden, J. P., Carlson, C. W., Ergun, R. E., Klumpar, D. M., and Moebius, E.: 1999, ‘Ion and electron characteristics in auroral density cavities associated with ion beams: No evidence for cold ionospheric plasma’. J. Geophys. Res. 104, 14,671.

    ADS  Google Scholar 

  • Moebius, E., Tang, L., Kistler, L. M., Popecki, M., Lund, E. J., Klumpar, D., et al.: 1998, ‘Species dependent energies in upward directed ion beams over auroral arcs as observed with FAST TEAMS’, Geophys. Res. Lett. 25, 2029.

    Article  ADS  Google Scholar 

  • Persoon, A. D. G., Peterson, W. K., Waite, J. J. H., Burch, J., and Green, J. L.: 1988, ‘Electron density depletions in the nightside auroral zone’. J. Geophys. Res. 93, 1871.

    Article  ADS  Google Scholar 

  • Piddington, J.: 1956, ‘Solar atmospheric heating by hydromagnetic waves’, MNRAS 116, 314.

    ADS  MathSciNet  Google Scholar 

  • Tung, Y.-K., Carlson, C. W., McFadden, J. P., Klumpar, D. M., Parks, G. K., Peria, W. J., et al.: 2001, ‘Auroral polar cap boundary ion conic outflow observed on FAST’. J. Geophys. Res. 106, 3603.

    Article  ADS  Google Scholar 

  • Winglee, R. M.:1989, ‘Heating and acceleration of heavy ions during solar flares’, Astrophys. J. 343, 511.

    Article  ADS  Google Scholar 

  • Winglee, R. M., Kiplinger, A. L., Zarro, D. M., Dulk, G. A., and Lemen, J. R.: 1991, ‘Interrelation of soft and hard X-ray emissions during solar flares. I. Observations’, Astrophys. J. 375, 366.

    Article  ADS  Google Scholar 

  • Withbroe, G.L., and Noyes, R. W.: 1977, Ann. Rev. Astron. Astrophys. 15, 363.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Haerendel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haerendel, G. Commonalities Between Ionosphere and Chromosphere. Space Sci Rev 124, 317–331 (2006). https://doi.org/10.1007/s11214-006-9092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-006-9092-z

Keywords

Navigation