Skip to main content
Log in

Impact Cratering Theory and Modeling for the Deep Impact Mission: From Mission Planning to Data Analysis

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The cratering event produced by the Deep Impact mission is a unique experimental opportunity, beyond the capability of Earth-based laboratories with regard to the impacting energy, target material, space environment, and extremely low-gravity field. Consequently, impact cratering theory and modeling play an important role in this mission, from initial inception to final data analysis. Experimentally derived impact cratering scaling laws provide us with our best estimates for the crater diameter, depth, and formation time: critical in the mission planning stage for producing the flight plan and instrument specifications. Cratering theory has strongly influenced the impactor design, producing a probe that should produce the largest possible crater on the surface of Tempel 1 under a wide range of scenarios. Numerical hydrocode modeling allows us to estimate the volume and thermodynamic characteristics of the material vaporized in the early stages of the impact. Hydrocode modeling will also aid us in understanding the observed crater excavation process, especially in the area of impacts into porous materials. Finally, experimentally derived ejecta scaling laws and modeling provide us with a means to predict and analyze the observed behavior of the material launched from the comet during crater excavation, and may provide us with a unique means of estimating the magnitude of the comet’s gravity field and by extension the mass and density of comet Tempel 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, C. E.: 1987, Int. J. Impact Eng. 5, 33.

    Article  Google Scholar 

  • Anderson, J. L. B., Schultz, P. H., and Heineck, J. T.: 2003, J. Geophys. Res. (Planets) 108, 13.

    Google Scholar 

  • Artemieva, N. A. and Ivanov, B. A.: 2001, Lunar Planet. Inst. Conf. Abst. 32, 1431.

    Google Scholar 

  • Asphaug, E. and Benz, W.: 1994, Nature 370, 120.

    Article  ADS  Google Scholar 

  • Brandt, J. C. and Chapman, R. D.: 2004, Introduction to Comets, Cambridge University Press, Cambridge, USA.

    Google Scholar 

  • Brownlee, D. E., Horz, F., Newburn, R. L., Zolensky, M., Duxbury, T. C., Sandford, S., et al.: 2004, Science 304, 1764.

    Article  ADS  Google Scholar 

  • Chamberlain, J. W. and Hunten, D. M.: 1987, Theory of Planetary Atmospheres, Academic Press, San Diego.

    Google Scholar 

  • Cintala, M. J., Berthoud, L., and Hörz, F.: 1999, Meteor. Planet. Sci. 34, 605.

    Google Scholar 

  • Collins, G. C., Melosh, H. J., and Ivanov, B. A.: 2004, Meteor. Planet. Sci. 39, 217.

    Article  ADS  Google Scholar 

  • Croft, S. K.: 1981, in Schultz, P. H. and Merrill, R. B. (eds.), Multi-Ring Basins, Pergamon Press, New York, p. 207.

    Google Scholar 

  • Geissler, P., Petit, J. M., Durda, D. D., Greenberg, R., Bottke, W. F., and Nolan, M. C.: 1996, Icarus 120, 140.

    Article  ADS  Google Scholar 

  • Grady, D. E. and Kipp, M. E.: 1987, in Atkinson, B. K. (ed.), Fracture Mechanics of Rock, Academic Press, San Diego, p. 429.

    Google Scholar 

  • Heiken, G. H., Vaniman, D. T., and French, B. M.: 1991, Lunar Sourcebook, Cambridge University Press, Cambridge, USA.

    Google Scholar 

  • Holsapple, K. A.: 1980, Lunar and Planetary Science Conference, Vol. 11, Pergamon Press, New York, p. 2379.

    Google Scholar 

  • Holsapple, K. A. and Schmidt, R. M.: 1982, J. Geophys. Res. 87, 1849.

    Article  ADS  Google Scholar 

  • Housen, K. R., Schmidt, R. M., and Holsapple, K.A.: 1983, J. Geophys. Res. 88, 2485.

    ADS  Google Scholar 

  • Jessberger, E. K.: 1999, Space Sci. Rev. 90, 91.

    Article  ADS  Google Scholar 

  • Larson, D. B.: 1977, The Relationship of Rock Properties to Explosive Energy Coupling, UCRL-52204, University of California Research Labs.

  • Lisse, C. M., A’Hearn, M. F., Fernandez, Y. R., McLaughlin, S. A., Meech, K. J., and Walker, R. J.: 2004, Icarus, in press.

  • Love, S. G., Hörz, F., and Brownlee, D. E.: 1993, Icarus 105, 216.

    Article  ADS  Google Scholar 

  • McGlaun, J. M., Thompson, S. I., and Elrick, M. G.: 1990, Int. J. Impact Eng. 10, 351.

    Article  Google Scholar 

  • Melosh, H. J.: 1989, Impact Cratering: A Geologic Process, Oxford University Press, New York.

    Google Scholar 

  • Melosh, H. J.: 2000, Lunar Planet. Inst. Conf. Abst. 31, 1903.

    ADS  Google Scholar 

  • Melosh, H. J. and Ivanov, B. A.: 1999, Ann. Rev. Earth Planet. Sci. 27, 385.

    Article  ADS  Google Scholar 

  • Nolan, M. C., Asphaug, E., Melosh, H. J., and Greenberg, R.: 1996, Icarus 124, 359.

    Article  ADS  Google Scholar 

  • Nordyke, M. D.: 1962, J. Geophy. Res. 67, 1965.

    ADS  Google Scholar 

  • Peale, S. J.: 1989, Icarus 82, 36.

    Article  ADS  Google Scholar 

  • Pierazzo, E., Artemieva, N. A., and Spitale, J. N.: 2001, ESF-IMPACT 5: Catastrophic Events and Mass Extinctions: Impacts and Beyond, Granada, Spain.

    Google Scholar 

  • Poorman, K. L. and Piekutowski, A. J.: 1995, Int. J. Impact Eng. 17, 639.

    Article  Google Scholar 

  • Rubin, M. B., Vorobiev, O. Y., and Glenn, L. A.: 2000, Int. J. Solids Struc. 37, 1841.

    Article  MATH  Google Scholar 

  • Sagdeev, R. Z., Elyasberg, P. E., and Moroz, V. I.: 1988, Nature 331, 240.

    Article  ADS  Google Scholar 

  • Scotti, J. and Melosh, H. J.: 1993, Nature 365, 733.

    Article  ADS  Google Scholar 

  • Schmidt, R. M. and Housen, K. R.: 1987, Int. J. Impact Eng. 5, 543.

    Article  ADS  Google Scholar 

  • Schultz, P. H. Anderson, J. L. B., and Heineck, J. T.: 2002, Lunar Planet. Inst. Conf. Abst. 33, 1875.

    ADS  Google Scholar 

  • Schultz, P. H. and Ernst, C.: 2005, Space Sci. Rev., this volume.

  • Shuvalov, V. V.: 1999, Shock Waves 9, 381.

    Article  MATH  ADS  Google Scholar 

  • Taylor, S. R.: 1982, Planetary Science: A Lunar Perspective, Lunar and Planetary Institute, Texas.

    Google Scholar 

  • Thompson, S. L. and Lauson, H. S.: 1972, Improvements in the Chart-D radiation hydrodynamic code III: Revised analytical equation of state, Sandia National Laboratories Report SC-RR-710714, Albuquerque, New Mexico, 119 pp.

  • Werner, R. A.: 1994, Celest. Mech. Dyn. Astron. 59, 253.

    Article  MATH  ADS  Google Scholar 

  • Wroth, C. P. and Bassett, R. H.: 1983, Géotechnique 33, 32.

    Google Scholar 

  • Wünnemann, K. and Ivanov, B. A.: 2003, Planet. Space Sci. 51, 831.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Richardson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, J.E., Melosh, H.J., Artemeiva, N.A. et al. Impact Cratering Theory and Modeling for the Deep Impact Mission: From Mission Planning to Data Analysis. Space Sci Rev 117, 241–267 (2005). https://doi.org/10.1007/s11214-005-3393-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-005-3393-5

Keywords

Navigation