Giant Planet Ionospheres and Thermospheres: The Importance of Ion-Neutral Coupling

Abstract

Planetary upper atmospheres-coexisting thermospheres and ionospheres-form an important boundary between the planet itself and interplanetary space. The solar wind and radiation from the Sun may react with the upper atmosphere directly, as in the case of Venus. If the planet has a magnetic field, however, such interactions are mediated by the magnetosphere, as in the case of the Earth. All of the Solar System’s giant planets have magnetic fields of various strengths, and interactions with their space environments are thus mediated by their respective magnetospheres. This article concentrates on the consequences of magnetosphere-atmosphere interactions for the physical conditions of the thermosphere and ionosphere. In particular, we wish to highlight important new considerations concerning the energy balance in the upper atmosphere of Jupiter and Saturn, and the role that coupling between the ionosphere and thermosphere may play in establishing and regulating energy flows and temperatures there. This article also compares the auroral activity of Earth, Jupiter, Saturn and Uranus. The Earth’s behaviour is controlled, externally, by the solar wind. But Jupiter’s is determined by the co-rotation or otherwise of the equatorial plasmasheet, which is internal to the planet’s magnetosphere. Despite being rapid rotators, like Jupiter, Saturn and Uranus appear to have auroral emissions that are mainly under solar (wind) control. For Jupiter and Saturn, it is shown that Joule heating and “frictional” effects, due to ion-neutral coupling can produce large amounts of energy that may account for their high exospheric temperatures.

This is a preview of subscription content, log in to check access.

References

  1. Abel, B. and Thorne, R.M.: 2003, ‘Relativistic charged particle precipitation into Jupiter’s subauroral atmosphere’, Icarus 166, 311–319.

    Article  Google Scholar 

  2. Achilleos, N., Miller, S., Tennyson, J., Aylward, A.D., Mueller-Wodarg, I., and Rees, D.: 1998, ‘JIM: a time-dependent, three-dimensional model of Jupiter’s thermosphere and ioniosphere’, J. Geophys. Res. 103, 20089–20112.

    Article  Google Scholar 

  3. Atreya, S.K.: 1986, The Atmosphere and Ionospheres of the Outer Planets and Their Satellites, Springer Verlag, New York.

    Google Scholar 

  4. Ballester, G.E., and 21 other colleagues: 1998, ‘Time-resolved observations of Jupiter’s far ultraviolet auroras’, Science 274, 409–413.

    Article  Google Scholar 

  5. Baron, R., Joseph, R.D., Owen, T., Tennyson, J., Miller, S., and Ballester, G.E.: 1991, ‘Imaging Jupiter’s aurorae from H+ 3emissions in the 3–4mm band’, Nature 353, 539–542.

    Article  PubMed  Google Scholar 

  6. Bhardwaj, A. and Gladstone, G.R.: 2000, ‘Auroral emissions of the giant planets’, Rev. Geophys. 38, 295–353.

    Article  Google Scholar 

  7. Broadfoot, A.L., and 18 others: 1986, ‘Ultraviolet spectrometer observations of Uranus’, Science 233, 74–79.

    Google Scholar 

  8. Clarke, J.T., Caldwell, J., Skinner, T., and Yelle, R.: 1987, ‘The aurora and airglow of Jupiter’, in M.J.S. Belton, R.A. West, and J. Rahe (eds.), Time Variable Phenomena in the Jovian System NASA, Washington, pp. 211–228.

    Google Scholar 

  9. Clarke, J.T., and 10 co-workers: 1998, ‘Hubble Space Telescope imaging of Jupiter’s UV aurora during the Galileo orbiter mission’, J. Geophys. Res. 103, 20217–20236.

    Article  Google Scholar 

  10. Clarke, J.T., and 11 co-workers: 2002, ‘Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter’, Nature 415, 997–1000.

    Article  PubMed  Google Scholar 

  11. Connerney, J.E.P., Baron, R., Satoh, T., and Owen, T.: 1993, ‘Images of excited H+ 3at the foot of the Io flux tube in Jupiter’s atmosphere’, Science 262, 1035–1038.

    Google Scholar 

  12. Cowley, S.W.H. and Bunce, E.J.: 2001, ‘Origin of the main auroral oval in Jupiter’s coupled magnetosphere-ionosphere system’, Planet. Space Sci. 49, 1067–1088.

    Google Scholar 

  13. Cowley, S.W.H., Bunce, E.J., Stallard, T.S., and Miller, S.: 2003, ‘Jupiter’s polar ionospheric flows: theoretical interpretation’, Geophys. Res. Lett. 30, 1220.

    Article  Google Scholar 

  14. Cowley, S.W.H., Bunce, E.J., and Prangé, R.: 2004, ‘Saturn’s polar ionospheric flows and their relation to the main auroral oval’, Ann. Geophysicae 22, 1379.

    Google Scholar 

  15. Drossart, P., Bézard, B., Atreya, S.K., Bishop, J., and Waite, J.H., Jr., and Boice, D.: 1993, ‘Thermal profiles in the auroral regions of Jupiter’, J. Geophys. Res. 98, 18803–18810.

    Google Scholar 

  16. Dungey, J.W.: 1961, ‘The interplanetary magnetic field and auroral zones’, Phys. Rev. Lett. 6, 47.

    Article  Google Scholar 

  17. Feldman, P.D., McGrath, M.A., Moos, H.W., Durrance, S.T., Strobel, D.F., and Davidson, A.F.: 1993, ‘The spectrum of the jovian dayglow observed at a 3A resolution with the Hopkins Ultraviolet Telescope’, Astrophys. J. 406, 279–284.

    Article  Google Scholar 

  18. Gérard, J.-C., Dols, V., Grodent, D., Waite, J.H., Jr., and Prangé, R.: 1995, ‘Simultaneous observations of the saturnian aurora and polar haze with the HST/FOC’, Geophys. Res. Lett. 22, 2685–2688.

    Article  Google Scholar 

  19. Grodent, D., Waite, J.H., Jr., and Gérard, J.-C.: 2001, ‘A self-consistent model of the jovian auroral thermal structure’, J. Geophys. Res. 106, 12933–12952.

    Article  Google Scholar 

  20. Grodent, D., Clarke, J.T., Kim, J., Waite, J.H., Jr., and Cowley, S.W.H.: 2003, ‘Jupiter’s main auroral oval observed with HST-STIS’, J. Geophys. Res. 108, 9921–9937.

    Google Scholar 

  21. Gurnett, D.A., and 16 co-workers: 2002, ‘Control of Jupiter’s radio emission and aurorae by the solar wind’, Nature 415, 985–987.

    Article  PubMed  Google Scholar 

  22. Heaps, M.G.: 1975, ‘The roles of particle precipitation and Joule heating in the energy balance of the jovian thermosphere’, Icarus 29, 273–281.

    Article  Google Scholar 

  23. Herbert, F. and Sandel, B.R.: 1994, ‘The uranian aurora and its relationship to the magnetosphere’, J. Geophys. Res. 99, 4143–4160.

    Article  Google Scholar 

  24. Hickey, M.P., Walterscheid, R.L., and Schubert, G.: 2000, ‘Gravity wave heating and cooling in Jupiter’s thermosphere’, Icarus 148, 266–281.

    Article  Google Scholar 

  25. Hill, T.W.: 1979, ‘Inertial limit on corotation’, J. Geophys. Res. 84, 6554–6558.

    Google Scholar 

  26. Hill, T.W.: 2001, ‘The jovian auroral oval’, J. Geophys. Res. 106, 8101–8107.

    Article  Google Scholar 

  27. Hill, T.W. and Dessler, A.J.: 1991, ‘Plasma motions in planetary magnetospheres’, Science 252, 410–415.

    Google Scholar 

  28. Huang, T.S. and Hill, T.W.: 1989, ‘Corotation lag of the jovian atmosphere, ionosphere and magnetosphere’, J. Geophys. Res. 94, 3761–3765.

    Google Scholar 

  29. Isbell, J., Dessler, A.J., and Waite, J.H., Jr.: 1984, ‘Magnetospheric energization by interaction between planetary spin and solar wind’, J. Geophys. Res. 89, 10716–10722.

    Google Scholar 

  30. Kim, Y.H., Fox, J.L., and Porter, H.S.: 1992, ‘Densities and vibrational distribution of H+ 3in the jovian auroral ionosphere’, J. Geophys. Res. 97, 6093–6101.

    Google Scholar 

  31. Kivelson, M.G., and 13 colleagues: 1997, ‘Galileo at Jupiter: changing states of the magnetosphere and first look at Io and Ganymede’, Adv. Space Res. 20, 129.

    Article  Google Scholar 

  32. Kivelson, M.G.: 2005, ‘The current systems of the jovian magnetosphere and ionosphere and predictions for Saturn’, this volume.

  33. Lam, H.A., Miller, S., Joseph, R.D., Geballe, T.R., Trafton, L.M., Tennyson, J., and Ballester, G.E.: 1997a, ‘Variation in the H+ 3emission of Uranus’, Astrophys. J. 474, L73–L76.

    Article  Google Scholar 

  34. Lam, H.A., Achilleos, N., Miller, S., Tennyson, J., Trafton, L.M., Geballe, T.R., and Ballester, G.E.: 1997b, ‘A baseline spectroscopic study of the infrared auroras of Jupiter’, Icarus 127, 379–393.

    Article  Google Scholar 

  35. Liu, W. and Dalgarno, A.: 1996, ‘The ultraviolet spectrum of the jovian dayglow’, Astrophys. J. 462, 502–518.

    Article  Google Scholar 

  36. Majeed, T. and McConnell, J.C.: 1991, ‘The upper ionospheres of Jupiter and Saturn’, Planet. Space Sci. 39, 1715–1732.

    Article  Google Scholar 

  37. Majeed, T., McConnell, J.C., and Yelle, R.V.: 1991, ‘Vibrationally excited H2 in the outer planets thermosphere: fluorescence in the Lyman and Werner bands’, Planet. Space Sci. 39, 1591–1605.

    Article  Google Scholar 

  38. Majeed, T., Waite, J.H., Jr., Bougher, S.W., Yelle, R.V., Gladstone, G.R., McConnell, J.C., and Bhardwaj, A.: 2004a, ‘The ionospheres-thermospheres of the giant planets’, Adv. Space Res. 33, 197–211.

    Article  Google Scholar 

  39. Majeed, T., Waite, J.H., Bougher, S.W., and Gladstone, G.R.: 2004b, ‘Jupiter thermosphere general circulation model I. Equatorial thermal structure’, J. Geophys. Res., submitted.

  40. Matcheva, K.I. and Strobel, D.F.: 1999, ‘Heating of Jupiter’s thermosphere by dissipation of gravity waves due to molecular viscosity and heat conduction’, Icarus 140, 328–340.

    Article  Google Scholar 

  41. Melin, H., Stallard, T., and Miller, S.: 2004, ‘A new determination of Saturn’s upper atmospheric temperature in the auroral/polar region’, Astrophys. J. Lett., in preparation.

  42. Miller, S., Achilleos, N., Ballester, G.E., Lam, H.A., Tennyson, J., Geballe, T.R., and Trafton, L.M.: 1997, ‘Mid-to-low latitude H+ 3emission from Jupiter’, Icarus 130, 57–67.

    Article  Google Scholar 

  43. Miller, S., and 10 other colleagues: 2000, ‘The role of H+ 3in planetary atmospheres’, Phil. Trans. Roy. Soc. 358, 2485–2502.

    Article  Google Scholar 

  44. Millward, G., Miller, S., Stallard, T., Aylward, A.D., and Achilleos, N.: 2002, ‘On the dynamics of the jovian ionosphere and thermosphere III: the modelling of auroral conductivity’, Icarus 160, 95–107.

    Article  Google Scholar 

  45. Millward, G., Miller, S., Stallard, T., Achilleos, N., and Aywlard, A.D.: 2004, ‘On the dynamics of the jovian ionosphere and thermosphere IV: ion-neutral coupling’, Icarus, in press.

  46. Moore, L., Mendillo, M., Mueller-Wodarg, I., and Murr, D.: 2004, ‘Photochemical modelling of global variations and ring shadowing in Saturn’s ionosphere’, Icarus, submitted.

  47. Moses, J.I. and Bass, S.F.: 2000, ‘The effects of external material on the chemistry and structure of Saturn’s ionosphere’, J. Geophys. Res. 105, 7013–7052.

    Article  Google Scholar 

  48. Moses, J.I., Bézard, B., Lellouch, E., Gladstone, G.R., Feuchtgruber, H., and Allen, M.: 2000, ‘Photochemistry of Saturn’s atmosphere I. Hydrocarbon chemistry and comparisons with ISO observations’, Icarus 143, 244–298.

    Article  Google Scholar 

  49. Mueller-Wodarg, I.C.F., Mendillo, M., Yelle, R.V., and Aylward, A.D.: 2004, ‘A global circulation model of Saturn’s thermosphere’, Icarus, in press.

  50. Pallier, L. and Prangé, R.: 2001, ‘More about the structure of the high latitude jovian aurorae’, Planet. Space Sci. 49, 1159–1173.

    Article  Google Scholar 

  51. Prangé, R., Rego, D., Pallier, L., Connerney, J.E.P., Zarka, P., and Quenniec, J.: 1998, ‘Detailed study of FUV jovian auroral features with the post-COSTAR HST faint object camera’, J. Geophys. Res. 103, 20195–20215.

    Article  Google Scholar 

  52. Pryor, W.R., Stewart, A.I.F., Simmons, K.E., Ajello, J.M., Tobiska, W.K., Clarke, J.T., and Gladstone, G.R.: 2001, ‘Detection of rapdily varying H2 emissions in Jupiter’s aurora from the Galileo orbiter’, Icarus 151, 314–317.

    Article  Google Scholar 

  53. Rego, D., Achilleos, N., Stallard, T., Miller, S., Prangé, R., Dougherty, M., and Joseph, R.D.: 1999, ‘Supersonic winds in Jupiter’s aurorae’, Nature 399, 121–124.

    Article  Google Scholar 

  54. Rego, D., Miller, S., Achilleos, N., Prangé, R., and Joseph, R.D.: 2000, ‘Latitudinal profiles of the jovian IR emission of H+ 3at 4 microns using the NASA Infrared Telescope Facility’, Icarus 147, 366–385.

    Article  Google Scholar 

  55. Satoh, T., Connerney, J.E.P., and Baron, R.L.: 1996, ‘Emission source model of Jupiter’s H+ 3aurorae: a generalised inverse analysis of images’, Icarus 122, 1–23.

    Article  Google Scholar 

  56. Satoh, T. and Connerney, J.E.P.: 1999, ‘Jupiter’s H+ 3emissions viewed in corrected jovimagnetic coordinates’, Icarus 141, 236–252.

    Article  Google Scholar 

  57. Seiff, A., and 10 co-workers: 1998, ‘Thermal structure of Jupiter’s atmosphere near the edge of a 5-mm hot spot in the north equatorial belt’, J. Geophys. Res. 103, 22857–22890.

    Article  Google Scholar 

  58. Smith, G.R., Shemansky, D.E., Holberg, J.B., Broadfoot, A.L., Sandel, B.R., and McConnell, J.C.: 1983, ‘Saturn’s upper atmosphere from the Voyager 2 EUV solar and stellar occultations’, J. Geophys. Res. 88, 8667–8678.

    Google Scholar 

  59. Smith, C., Aylward, A., Miller, S., and Mueller-Wodarg, I.C.F.: 2004, ‘Polar heating in Saturn’s thermosphere’, Ann. Geophysicae, submitted.

  60. Southwood, D.J. and Kivelson, M.G.: 2001, ‘A new perspective on the influence of the solar wind on the jovian magnetosphere’, J. Geophys. Res. 106, 6123–6130.

    Article  Google Scholar 

  61. Stallard, T., Miller, S., Millward, G., and Joseph, R.D.: 2001, ‘On the dynamics of the jovian ionosphere and thermosphere I: the measurement of ion winds’, Icarus 154, 475–491.

    Article  Google Scholar 

  62. Stallard, T.S., Miller, S., Cowley, S.W.H., and Bunce, E.J.: 2003, ‘Jupiter’s polar ionospheric flows: measured intensity and velocity variations poleward of the main auroral oval’, Geophys. Res. Lett. 30, 1221.

    Article  Google Scholar 

  63. Stallard, T.S., Miller, S., Trafton, L.M., Geballe, T.R., and Joseph, R.D.: 2004, ‘Ion winds in Saturn’s southern auroral/polar region’, Icarus 167, 204–211.

    Article  Google Scholar 

  64. Strobel, D.F. and Smith, G.R.: 1973, ‘On the Temperature of the Jovian Thermosphere’, J. Atmos. Sci. 30, 718.

    Article  Google Scholar 

  65. Strobel, D.F.: 2005, ‘Photochemistry in outer solar system atmospheres’, this volume.

  66. Trafton, L.M., Miller, S., Geballe, T.R., Tennyson, J., and Ballester, G.E.: 1999, ‘H2 quadrupole and H+ 3emission from Uranus: the uranian thermosphere, ionosphere and aurora’, Astrophys. J. 524, 1059–1083.

    Article  Google Scholar 

  67. Trauger, J.T., and 16 co-workers: 1998, ‘Saturn’s hydrogen aurora: wide field planetary camera 2 imaging from Hubble Space Telescope’, J. Geophys. Res. 103, 20237–20244.

    Article  Google Scholar 

  68. Vasavada, A.R., Bouchez, A.H., Ingersoll, A.P., Little, B., Anger, C.D., and the Galileo SSI Team: 1999, ‘Jupiter’s visible aurora and Io footprint’, J. Geophys. Res. 104, 27133–27142.

    Article  Google Scholar 

  69. Vasyliunas, V.M.: 1983, ‘Plasma distribution and flow’, in A.J. Dessler (ed.), Physics of the jovian magnetosphere, Cambridge University Press, pp. 395–453.

  70. Vincent, M.B., and 18 co-workers: 2000, ‘Jupiter’s polar regions in the ultraviolet as imaged by HST/WIFPC2: auroral aligned features and zonal motions’, Icarus 143, 205–222.

    Article  Google Scholar 

  71. Waite, J.H., Jr., Cravens, T.E., Kozyra, J.U., Nagy, A.F., Atreya, S.K., and Chen, R.H.: 1983, ‘Electron precipitation and related auronomy of the jovian thermosphere and ionosphere’, J. Geophys. Res. 88, 6143–6163.

    Google Scholar 

  72. Waite, J.H., Jr., Gladstone, G.R., Lewis, W.S., Drossart, P., Cravens, T.E., Maurelis, A.N., Mauk, B.H., and Miller, S.: 1997, ‘Equatorial X-ray emissions: implications for Jupiter’s high exospheric temperatures’, Science 276, 104–108.

    Article  PubMed  Google Scholar 

  73. Waite, J.H., Jr., and 10 co-workers: 2001, ‘An auroral flare at Jupiter’, Nature 410, 787–789.

    Article  PubMed  Google Scholar 

  74. Waite, J.H., Jr. and Lummerzheim, D.: 2002, ‘Comparison of auroral processes: Earth and Jupiter, in M.Mendillo, A. Nagy, and J.H.Waite (eds.), Atmospheres in the Solar System, AGU Geophysical Monograph 130, 115–139.

  75. Yelle, R.V. and Miller, S.: 2004, ‘Jupiter’s thermosphere and ionosphere in F. Bagenal, T.E. Dowling, and W.B. McKinnon (eds.), Jupiter: The Planet, Satellites and Magnetosphere Cambridge University Press.

  76. Young, L.A., Yelle, R.V., Young, R.E., Seiff, A., and Kirk, D.B.: 1997, ‘Gravity waves in Jupiter’s thermosphere’, Science 276, 108–111.

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Steve Miller.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miller, S., Aylward, A. & Millward, G. Giant Planet Ionospheres and Thermospheres: The Importance of Ion-Neutral Coupling. Space Sci Rev 116, 319–343 (2005). https://doi.org/10.1007/s11214-005-1960-4

Download citation

Keywords

  • giant planets
  • ionosphere
  • thermosphere
  • ion-neutral coupling