Magnetosphere Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan

Abstract

The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.

This is a preview of subscription content, log in to check access.

References

  1. Amsif, A.: 1996, Etude et modélisation de la production d’atomes énergétiques neutres dans l’exosphère de Titan, Ph. D. Thesis, P. Sabatier University, Toulouse, France.

  2. Amsif, A., Dandouras, J., and Roelof, E. C.: 1997, J. Geophys. Res. 102, 22169.

    Google Scholar 

  3. Barbosa, D. D.: 1987, Icarus 72, 53.

    Article  Google Scholar 

  4. Barbosa, D. D. and Eviatar, A.: 1986, Astrophys. J. 310, 927.

    Google Scholar 

  5. Barbosa, D. D., Eviatar, A., and Siscoe, G. L.: 1984, J. Geophys. Res. 89, 3789.

    Google Scholar 

  6. Baron, R. L., Owen, T., Connerney, J. E. P., Satoh, T., and Harrington, J.: 1996, Icarus 120/122, 437.

    Article  Google Scholar 

  7. Barrow, C. H. and Desch, M. D.: 1989, Astron. Astro. Phys. 213, 495.

    Google Scholar 

  8. Belcher, J. W.: 1983, in: Dessler, A. J. (ed.), Physics of the Jovian Magnetosphere, Cambridge University Press, Cambridge, UK and New York, p. 68.

    Google Scholar 

  9. Broadfoot, A. L., Sandel, B. R., Shemansky, D. E., Holberg, J. B., Smith, G. R., Strobel, D. F., McConnell, J. C., Kumar, S., Hunten, D. M., Atreya, S. K., Donahue, T. M., Moos, H. W., Bertaux, L., Blamont, J. E., Pomphrey, R. B., and Linick, S.: 1981, Science 212, 206.

    Google Scholar 

  10. Burns, J. A., et al. 1994, An Integrated Strategy for the Planetary Sciences: 1995–2010, Report of the Committee on Planetary and Lunar Exploration, Space Studies Board, National Research Council, Washington, DC.

  11. Carbary, J. F. and Krimigis, S. M.: 1982, Geophys. Res. Lett. 9, 420.

    Google Scholar 

  12. Cheng, A. F.: 1986, J. Geophys. Res. 91, 4524.

    Google Scholar 

  13. Cheng, A. F. and Krimigis, S. M.: 1989a, J. Geophys. Res. 94, 12003.

    Google Scholar 

  14. Cheng, A. F. and Krimigis, S. M.: 1989b, Waite, J. H., Burch, J., Moore, R. (eds.),AGU Solar System Plasma Physics, p. 253.

  15. Cheng, A. F., Keath, E. P., Krimigis, S. M., Mauk, B. H., McEntire, R. W., Mitchell, D. G., Roelof, E. C., and Williams, D. J.: 1993, Remote Sens. Rev. 8, 101.

    Google Scholar 

  16. Clarke, J. T.,et al.1996, Science 274, 404.

    Google Scholar 

  17. Curtis, C. C. and Hsieh, K. C.: 1989, AGU Solar Syst. Plasma Phys., Geophys. Monogr. Ser. 54, 247.

    Google Scholar 

  18. Dandouras, J. and Amsif, A.: 1999, Planet. Space Sci. 47, 1355.

    Article  Google Scholar 

  19. Desch, M. D. and Barrow, C. H.: 1984, J. Geophys. Res. 89, 6819.

    Google Scholar 

  20. Dessler, A. J.: 1983, Physics of the Jovian Magnetosphere, Cambridge University Press.

  21. Esposito, L. W., Cuzzi, J. N., Holberg, J. B., Marouf, E. A., Tyler, G. L., and Porco, C. C.: 1984, Gehrels, T., Matthews, M. S., (eds.), Saturn, The University of Arizona Press, Tucson, p. 463.

    Google Scholar 

  22. Eviatar, A.: 1992, Adv. Space Res. 12(8), 367.

    Article  Google Scholar 

  23. Eviatar, A., Mekler, Y., and Coroniti, F. V.: 1976, Astrophys. J. 205, 622.

    Article  Google Scholar 

  24. Fisk, L. A., Schwadron, N. A., and Gloeckler, G.: 1997, Geophys. Res. Lett. 24, 93.

    Article  Google Scholar 

  25. Gehrels, T.: 1976, Jupiter, University of Arizona Press, Tucson, Arizona.

    Google Scholar 

  26. Geiss, J., Gloeckler, G., Fist, L. A. von Steiger, R.: 1995, J. Geophys. Res. 100, 23373.

    Article  Google Scholar 

  27. Geiss, J., Gloeckler, G., Mall, U., von Steiger, R., Galvin, A. B., and Ogilvie, K. W.: 1994, Astron. Astrophys. 282, 924.

    Google Scholar 

  28. Geiss, J.,et al.1992, Science 257, 1535.

    Google Scholar 

  29. Gloeckler, G.: 1996, Space Sci. Rev. 78, 335.

    Article  Google Scholar 

  30. Gloeckler, G. and Geiss, J.: 1998, Space Sci. Rev. 86(1–2), 127–159.

    Article  Google Scholar 

  31. Gloeckler, G. and Geiss, J.: 1996, Nature 381, 210.

    Article  Google Scholar 

  32. Gloeckler, G. and Hsieh, K. C.: 1979, Nucl. Inst. Methods 165, 537.

    Article  Google Scholar 

  33. Gloeckler, G., Fisk, L. A., and Geiss, J.: 1997, Nature 386, 374.

    Google Scholar 

  34. Gloeckler, G., Balsiger, H., Bürgi, A., Bochsler, P., Fisk, L. A., Galvin, A. B., Geiss, J., Gliem, F., Hamilton, D. C., Holzer, T. E., Hovestadt, D., Ipavich, F. M., Kirsch, E., Lundgren, R. A., Ogilvie, K. W., Sheldon, R. B., and Wilken, B.: 1995, Space Sci. Rev. 71, 79.

    Google Scholar 

  35. Gloeckler, G., Jokipii, J. R., Giacalone, J., and Geiss, J.: 1994, Geophys. Res. Lett. 21, 1565.

    Google Scholar 

  36. Gloeckler, G., Geiss, J., Balsiger, H., Fisk, L. A., Galvin, A. B., Ipavich, F. M., Ogilvie, K. W., von Steiger, R., and Wilken, B.: 1993, Science 261, 70.

    Google Scholar 

  37. Goertz, C. K.: 1989, Waite, J. H., Burch, J. L., Moore, R. L. (eds.), AGU Solar System Plasma Physics, Geophysical Monograph Series Vol. 54, p. 427.

  38. Gurnett, D. A.,et al.1982, J. Geophys. Res. 87, 1395.

    Google Scholar 

  39. Hilchenbach, M.et al.1998, Astophys. J. 503, 916.

    Article  Google Scholar 

  40. Holzer, T. E.: 1977, Rev. Geophys. Space Phys. 15, 467.

    Google Scholar 

  41. Hsieh, K. C. and Curtis, C. C.: 1989, Waite, J., Burch, J., Moore, R. L. (eds.), AGU Solar System Plasma Physics, p. 159.

  42. Hsieh, K. C. and Curtis, C. C.: 1988, Geophys. Res. Lett. 15, 772.

    Google Scholar 

  43. Hsieh, K. C., Shih, K. L., Jokipii, J. R., and Gruntman, M. A.: 1992a, Astophys. J. 393, 756.

    Article  Google Scholar 

  44. Hsieh, K. C., Shih, K. L., Jokipii, J. R., and Gruntman, M. A.: 1992b, Marsch, E., Schwenn, R., (eds.), Proceedings of the 3rd COSPAR Colloquium, p. 365.

  45. Hsieh, K. C., Sandel, B. R., Drake, V. A., King, R. S.: 1991, Nucl. Inst. Methods B61, 187.

    Google Scholar 

  46. Hsieh, K. C., Keppler, E., and Schmidtke, G.: 1980, J. Appl. Phys. 51, 2242.

    Google Scholar 

  47. Ip, W. H.: 1997, Icarus 126, 42.

    Article  Google Scholar 

  48. Ip, W. H.: 1996, Astrophys. J. 457, 922.

    Article  Google Scholar 

  49. Ip, W. H.: 1992, in: Proceedings of the Symposium on Titan, Toulouse, France, ESA SP-338, p. 243.

  50. Ip, W. H.: 1990, Astrophys. J. 362, 354.

    Google Scholar 

  51. Ip, W. H.: 1984, J. Geophys. Res. 89, 2377.

    Google Scholar 

  52. Ip, W. H., Williams, D. J., McEntire, R. W., and Mauk, B. H.: 1998, Geophys. Res. Lett. 25, 829.

    Article  Google Scholar 

  53. Ip, W. H., Williams, D. J., McEntire, R. W., and Mauk, B. H.: 1997, Geophys. Res. Lett. 24, 2631.

    Google Scholar 

  54. Ipavich, F. M., Lundgren, R. A., Lambird, B. A., and Gloeckler, G.: 1978, Nucl. Inst. Methods 154, 291.

    Article  Google Scholar 

  55. Johnson, R. E.: 1990, Energetic Charged Particle Interactions with Atmospheres and Surfaces, Springer-Verlag, New York.

    Google Scholar 

  56. Johnson, R. E., Pospieszalska, M., Sittler, E., Cheng, A. F., Lanzerotti, L. J., and Sieveka, E. M.: 1989, Icarus 77, 311.

    Article  CAS  Google Scholar 

  57. Kaiser, M. L.: 1993, J. Geophys. Res. 98, 18757.

    Google Scholar 

  58. Kirsch, E., Krimigis, S. M., Ip, W. H. Gloeckler, G.: 1981a, Nature 292, 718.

    Google Scholar 

  59. Kirsch, E., Krimigis, S. M., Kohl, J. W., Keath, E. P.: 1981b, Geophys. Res. Lett. 8, 169.

    Google Scholar 

  60. Krimigis, S. M.: 1992, Space Sci. Rev. 59, 167.

    Article  Google Scholar 

  61. Krimigis, S. M.: 1986, Comparative Study of Magnetospheric Systems, CNES, LEPADUE Editions, Toulouse, France, Vol. 99.

  62. Krimigis, S. M. and Armstrong, T. P.: 1982, Geophys. Res. Lett. 9, 1143.

    Google Scholar 

  63. Krimigis, S. M., Carbary, J. F., Keath, E. P., and Armstrong, T. P.: 1982a, EOS 1068.

  64. Krimigis, S. M., Armstrong, T. P., Axford, W. I., Bostrom, C. O., Gloeckler, G., Keath, E. P., Lanzerotti, L. J., Carbary, J. F., Hamilton, D. C., and Roelof, E. C.: 1982b, Science 215, 571.

    Google Scholar 

  65. Krimigis, S. M., Carbary, J. F., Keath, E. P., Armstrong, T. P., Lanzerotti, L. J., and Gloeckler, G.: 1983, J. Geophys. Res. 88, 8871.

    Google Scholar 

  66. Krimigis, S. M., Decker, R. B., Hamilton, D., and Gloeckler, G.: 2000, AIP Conf. Proc. 528, 333– 336.

    Google Scholar 

  67. Krimigis, S. M., Zwickl, R. D., and Baker, D. N.: 1985, J. Geophys. Res. 90, 3947.

    Google Scholar 

  68. Krimigis, S. M., Mitchell, D. G., Hamilton, D. C., Dandouras, J., Armstrong, T. P., Bolton, S. J., Cheng, A. F., Gloeckler, G., Hsieh, K. C., Keath, E. P., Krupp, N., Lagg, A., Lanzerotti, L. J., Livi, S., Mauk, B. H., McEntire, R. W., Roelof, E. C., Wilken, B., and Williams, D. J.: 2002, Nature 415, 994.

    PubMed  Google Scholar 

  69. Krimigis, S. M.,et al.1988, Planet. Space Sci. 36, 311.

    Article  Google Scholar 

  70. Krupp, N., Woch, J., Lagg, A., Wilken, B., Livi, S., and Williams, D. J.: 1998, Geophys. Res. Lett. 25, 1249–1252.

    Article  Google Scholar 

  71. Lagg, Andreas: 1998, Energiereiche Teilchen in der inneren Jupitermagnetosphaere: Simulation und Ergebnisse des EPD-Experimentes an Bord der Raumsonde GALILEO, Dissertation, Max-Planck-Institut fuer Aeronomie, Lindau/Harz, Germany, MPAE-W-807-98-01.

  72. Lee, M. A.: 1982, J. Geophys. Res. 87, 5063.

    Google Scholar 

  73. Mall, U., Fichtner, H., Kirsch, E., Hamilton, D. C., and Rucinski, D.: 1998, Planet. Space Sci., 46, 1375–1382.

    Article  Google Scholar 

  74. Mauk, B. H. and Krimigis, S. M.: 1987, J. Geophys. Res. 92, 9931.

    Google Scholar 

  75. Mauk, B. H., Krimigis, S. M., Mitchell, D. G., Roelof, E. C., Keath, E. P., and Dandouras, J.: 1998, Planet. Space Sci. 46, 1349.

    Article  Google Scholar 

  76. Mauk, B. H., Williams, D. J., and McEntire, R. W.: 1997a, Geophys. Res. Lett. 24, 2949.

    Article  Google Scholar 

  77. Mauk, B. H., Williams, D. J., McEntire, R. W., Khurana, K. K., and Roederer, J. G.: 1999, J. Geophys. Res. 104, 22759.

    Article  Google Scholar 

  78. Mauk, B. H., Krimigis, S. M., Mitchell, D. G., and Roelof, E. C.: 1998,Adv. Space Res. 21, 1483.

    Article  Google Scholar 

  79. Mauk, B. H., Krimigis, S. M., and Acuña, M. H.: 1994, J. Geophys. Res. 99, 14781.

    Google Scholar 

  80. Mauk, B., Krimigis, S. M., and Lepping, R.: 1985, J. Geophys. Res. 90, 8253.

    Google Scholar 

  81. McEntire, R. W. and Mitchell, D. G.: 1989, Burch, J., Waite, J., (eds.),Outstanding Problems in Solar System Plasma Physics, AGU Monograph.

  82. Meckbach, W., Braunstein, G., and Arista, N.: 1975, J. Phys. B 8, L344.

    Google Scholar 

  83. Mendis, D. A., Hill, J. R., Ip, W. H., Goertz, C. K., and Grün, E.: 1984, ’Electrodynamic processes in the ring system of Saturn’., Gehrels, T., Matthews,M. S.(eds.), Saturn, The University of Arizona Press, Tucson, p. 546.

    Google Scholar 

  84. Mitchell, D. G., Hsieh, K. C., Curtis, C. C., Hamilton, D. C., Voss, H. D., Roelof, E. C., and Brent, P. C.: 2001, Geophys. Res. Lett. 28, 1151.

    Article  Google Scholar 

  85. Mitchell, D. G., Krimigis, S. M., Cheng, A. F., Jaskulek, S. E., Keath, E. P., Mauk, B. H., McEntire, R. W., Roelof, E. C., Schlemm, C. E., Tossman, B. E., and Williams, D. J.: 1996, in: Proceedings SPIE International Symposium on Optical Science Engineering and Instrumentation, Mission to the Sun, Vol. 2803, p. 154.

    Google Scholar 

  86. Ness, N. F.,et al.1982, J. Geophys. Res. 87, 1369.

    Google Scholar 

  87. Neubauer, F. M.: 1992, in: Proceedings of the Symposium on Titan, Toulouse, France, ESA SP-338, p. 267.

  88. Paonessa, M. and Cheng, A. F.: 1986, J. Geophys. Res. 91, 1391.

    Google Scholar 

  89. Paranicas, C., Cheng, A. F., and Williams, D. J.: 1998, J. Geophys. Res. 103, 15001.

    Article  Google Scholar 

  90. Paranicas, C. P., Mauk, B. H., and Krimigis, S. M.: 1991, J. Geophys. Res. 96, 21135.

    Google Scholar 

  91. Prangé, R., Zarka, P., Ballester, G. E., Livengood, T. A., Denis, L., Carr, T., Reyes, F., Bame, S. J., and Moos, H. W.: 1993, Geophys. Res. 98, 18779.

    Google Scholar 

  92. Reiner, M. J., Fainberg, J., Stone, R. G., Kaiser, M. L., Desch, M. D., Manning, R., Zarka, P., and Pedersen, B. M.: 1993, J. Geophys. Res. Planets 98, 13163.

    Google Scholar 

  93. Roelof, E. C.: 1992, E. Marsh, R. Schwenn (eds) Proceedings of the 3rd COSPAR Colloquium, p. 385.

  94. Roelof, E. C.: 1987, Geophys. Res. Lett. 14, 652.

    Google Scholar 

  95. Roelof, E. C. and Williams, D. J.: 1990, Johns Hopkins APL Tech. Dig. 11, 72.

    Google Scholar 

  96. Roelof, E. C., Mitchell, D. G., and Williams, D. J.: 1985, J. Geophys. Res. 90, 10991.

    Google Scholar 

  97. Sandel, B. R. and Broadfoot, A. L.: 1981, Nature 292, 679.

    Article  Google Scholar 

  98. Satoh, T., Connerney, J. E. P., and Baron, R. L.: 1996, Icarus 122, 1.

    Article  Google Scholar 

  99. Schneider, N. M. and Trauger, J. T.: 1995, Astrophys. J. 450, 450.

    Article  Google Scholar 

  100. Schulz, M. and Lanzerotti, L. J.: 1974, Particle Diffusion in the Radiation Belts, Springer-Verlag.

  101. Shemansky, D. E. and Hall, D. T.: 1992, J. Geophys. Res. 97, 4143.

    Google Scholar 

  102. Simpson, J. A., Bastian, T. S., Chenette, D. L., McKibben, R. B., and Pyle, K. R.: 1980, J. Geophys. Res. 85, 5731.

    Google Scholar 

  103. Sittler, E. C., Ogilvie, K. W., and Scudder, J. D.: 1983, J. Geophys. Res. 88, 8847.

    Google Scholar 

  104. Van Allen, J. A.: 1984, Gehrels, T., Matthews, M. S., (eds.),Saturn, p. 281.

  105. Williams, D. J. and Mauk, B. H.: 1997, J. Geophys. Res. 102, 24283.

    Article  Google Scholar 

  106. Williams, D. J., Mauk, B., and McEntire, R. W.: 1997a, Geophys. Res. Lett. 24, 2953.

    Article  Google Scholar 

  107. Williams, D. J., Mauk, B. H., McEntire, R. W., Roelof, E. C., Armstrong, T. P., Wilken, B., Roederer, J. G., Krimigis, S. M., Fritz, T. A., Lanzerotti, L. J., and Murphy, N.: 1997b, Geophys. Res. Lett. 24, 2163.

    Article  Google Scholar 

  108. Williams, D. J., Mauk, B. H., McEntire, R. W., Roelof, E. C., Armstrong, T. P., Wilken, B., Roederer, J. G., Krimigis, S. M., Fritz, T. A., Lanzerotti, L. J.: 1996, Science 274, 401.

    PubMed  Google Scholar 

  109. Williams, D. J., McEntire, R. W., Schlemm, C. E., Lui, A. T. Y., Gloeckler, G., Christon, S. P., and Gliem, F.: 1994, J. Geomagn. Geoelectr. 46, 39.

    Google Scholar 

  110. Witte, M., Banaszkiewicz, M., and Rosenbauer, H.: 1996, Space Sci. Rev. 78, 289.

    Article  Google Scholar 

  111. Woch, J., Krupp, N., Lagg, A., Wilken, B., Livi, S., and Williams, D. J.: 1998, Geophys. Res. Lett. 25, 1253–1256.

    Article  Google Scholar 

  112. Woch, J., Krupp, N., Khurana, K. K., Kivelson, M. G., Roux, A., Perraut, S., Louarn, P., Lagg, A., Williams, D. J., Livi S., and Wilken, B.: 1999, Geophys. Res. Lett. 26, 2137–2140.

    Article  Google Scholar 

  113. Zwickl, R. D., Krimigis, S. M., Carbary, J. F., Keath, E. P., Armstrong, T. P., Hamilton, D. C., and Gloeckler, G.: 1981, J. Geophys. Res. 86, 8125.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. M. Krimigis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krimigis, S.M., Mitchell, D.G., Hamilton, D.C. et al. Magnetosphere Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan. Space Sci Rev 114, 233–329 (2004). https://doi.org/10.1007/s11214-004-1410-8

Download citation

Keywords

  • energetic neutral atoms
  • gas – plasma interaction
  • hot plasma composition
  • magnetospheric imaging
  • planetary magnetosphere
  • Saturn magnetosphere
  • space instrumentation
  • trapped energetic charge particles