Solar System Research

, Volume 39, Issue 5, pp 381–409 | Cite as

Numerical Modeling of the Largest Terrestrial Meteorite Craters

  • B. A. Ivanov
Article

Abstract

Multi-ring impact basins have been found on the surfaces of almost all planetary bodies in the Solar system with solid crusts. The details of their formation mechanism are still unclear. We present results of our numerical modeling of the formation of the largest known terrestrial impact craters. The geological and geophysical data on these structures accumulated over many decades are used to place constraints on the parameters of available numerical models with a dual purpose: (i) to choose parameters in available mechanical models for the crustal response of planetary bodies to a large impact and (ii) to use numerical modeling to refine the possible range of original diameters and the morphology of partially eroded terrestrial craters. We present numerical modeling results for the Vredefort, Sudbury, Chicxulub, and Popigai impact craters and compare these results with available geological and geophysical information.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Abramov, O. and Kring, D.A., Numerical Modeling of an Impact-Induced Hydrothermal System at the Sudbury Crater, J. Geophys. Res. (Planets), 2004, vol. 109, p. 10007.CrossRefGoogle Scholar
  2. Alvarez, L.W., Alvarez, W., Asaro, F., et al., Extraterrestrial Cause for the Cretaceous-Tertiary Extinction, Science, 1980, vol. 208, pp. 1095–1108.Google Scholar
  3. Amsden, A.A., Ruppel, H.M., and Hirt, C.W., SALE: A Simplified ALE Computer Program for Fluid Flow at All Speeds, Los Alamos: Los Alamos Laboratory Report LA-8095, 1980.Google Scholar
  4. Ariskin, A.A., Deutsch, A., and Ostermann, M., Sudbury Igneous Complex: Simulating Phase Equilibria and in Situ Differentiation for Two Proposed Parental Magmas, in Large Meteorite Impacts and Planetary Evolution II, Dressler, B.O., and Sharpton, V.L., Eds., Boulder: Geological Soc. Am., 1999, pp. 373–387.Google Scholar
  5. Barsukov, V.L., Venusian Igneous Rocks, in Venus geology, geochemistry, and geophysics-Research results from the USSR, Barsukov, V.L., Basilevsky, A.T., Volkov, V.P., et al., Eds., Tucson: Univ. Arizona Press, 1992, pp. 165–176.Google Scholar
  6. Bottomley, R., Grieve, R., York, D., et al., The Age of the Popigai Impact Event and Its Relation To Events at the Eocene/Oligocene Boundary, Nature, 1997, vol. 388, pp. 365–368.CrossRefGoogle Scholar
  7. Bralower, T.J., Paull, C.K., and Leckie, R.M., The Cretaceous-Tertiary Boundary Cocktail: Chicxulub Impact Triggers Margin Collapse, Geology, 1998, vol. 26, no.4, pp. 331–334.CrossRefGoogle Scholar
  8. Christeson, G.L., Nakamura, Y., Buffler, R.T., et al., Deep Crustal Structure of the Chicxulub Impact Crater, J. Geophys. Res., 2001, vol. 106, pp. 21751–21770.CrossRefGoogle Scholar
  9. Collins, G.S., Melosh, H.J., and Ivanov, B.A., Modeling Damage and Deformation in Impact Simulations, Met. Plan. Sci, 2004, vol. 39, no.2, pp. 217–231.Google Scholar
  10. Dahlman, O. and Israelson, H., Monitoring Underground Nuclear Explosions, New York: Elsevier, 1977.Google Scholar
  11. De Wit, M.J., Roering, C., Hart, R.J., et al., Formation of An Archean Continent, Nature, 1992, vol. 357, pp. 553–562.CrossRefGoogle Scholar
  12. Deutsch, A. and Grieve, R.A.F., The Sudbury Structure: Constraints on Its Genesis from Lithoprobe Results, Geophys. Res. Lett., 1994, vol. 21, pp. 963–966.CrossRefGoogle Scholar
  13. Deutsch, A., Grieve, R.A.F., Avermann, M., et al., The Sudbury Structure (Ontario, Canada): a Tectonically Deformed Multi-Ring Impact Basin, Geol. Rundsch., 1995, vol. 84, no.4, pp. 697–709.CrossRefGoogle Scholar
  14. Deutsch, A., Masaitis, V.L., Langenhorst, F., et al., Popigai, Siberia-Well Preserved Giant Impact Structure, National Treasury, and World'S Geological Heritage, Episodes, 2000, vol. 23, no.1, pp. 3–11.Google Scholar
  15. Dines, J. and Walsh, J., Impact Theory: General Principles and Method of Calculation in Euler Coordinates, in Vysokoskorostnye udarnye yavleniya (High-Speed Impact Phenomena), Moscow: Mir, 1973, pp. 49–111.Google Scholar
  16. Donofrio, R.R., North American Impact Structures Hold Giant Field Potential, Oil Gas J., 1998, no. 5, pp. 69–83.Google Scholar
  17. Doucoure, C.M., de Wit, M.J., and Mushayandebvu, M.F., Effective Elastic Thickness of the Continental Lithosphere in South Africa, J. Geophys. Res., 1996, vol. 101, pp. 11291–11304.CrossRefGoogle Scholar
  18. Dressler, B.O., General Geology of the Sudbury Area, in The Geology and Ore Deposits of the Sudbury Structure: Ontario Geological Survey Special, Pye, E.G., Naldrett, A.J., and Giblin, P.E., Eds., Ontario: Ministry of Natural Resoursec of Canada, 1984, vol. 1, pp. 57–82.Google Scholar
  19. Dutta, U., Biswas, N., Martirosyan, A., et al., Estimation of Earthquake Source Parameters and Site Response in Anchorage, Alaska from Strong-Motion Network Data Using Generalized Inversion Method, Phys. Earth, Planet. Inter., 2003, vol. 137, pp. 13–29.Google Scholar
  20. Ebbing, J., Janle, P., Koulouris, J., et al., 3D Gravity Modelling of the Chicxulub Impact Structure, Planet. Space Sci., 2001, vol. 49, pp. 599–609.CrossRefGoogle Scholar
  21. Foya, S.N., Gibson, R.L., and Reimold, W.U., Impact-Related Hydrothermal Alteration of Witwatersrand Gold Reefs in the Vredefort Dome and Witwatersrand Gold-fields, South Africa, Met. Plan. Sci., 1999, vol. 34(Suppl.), p. 37.Google Scholar
  22. Gibson, R.L. and Reimold, W.U., Thermal Metamorphic Signature of An Impact Event in the Vredefort Dome, South Africa, Geology, 1998, vol. 26, no.9, pp. 787–790.CrossRefGoogle Scholar
  23. Gibson, R.L., Reimold, W.U., and Stevens, G., Impact-Related Metamorphism in the Vredefort Dome, South Africa, in 29th Lunar and Planet. Sci. Conf., 1998, Abstract #1360.Google Scholar
  24. Gibson, R.L. and Reimold, W.U., The Metamorphic Finger-print of Large Impact Events: The Example of the Vre-defort Dome, South Africa, Met. Plan. Sci., 1999a, vol. 34(Suppl.), p. 42.Google Scholar
  25. Gibson, R.L. and Reimold, W.U., The Significance of the Vredefort Dome for the Thermal and Structural Evolution of the Witwatersrand Basin, South Africa, Mineral. Pertol., 1999b, vol. 66, pp. 5–23.CrossRefGoogle Scholar
  26. Gibson, R.L. and Jones, M.Q.W., Late Archean to Paleoproterozoic Geotherms in the Kaapvaal Craton, South Africa: Constraints on the Thermal Evolution of the Witwatersrand Basin, Basin Res., 2002, vol. 14, pp. 169–181.CrossRefGoogle Scholar
  27. Grajales-Nishimura, J.M., Cedillo-Pardo, E., Rosales-Dominguez, C., et al., Chicxulub Impact: The Origin of Reservoir and Seal Facies in the Southeastern Mexico Oil Fields, Geology, 2000, vol. 28, pp. 307–310.CrossRefGoogle Scholar
  28. Grieve, R.A.F., Robertson, P.B., and Dence, M.R., Constraints on the Formation of the Ring Impact Structures, in Multiring Basins, Schultz, P.H. and Merrill, R.B., Eds., New York: Pergamon, 1981, pp. 37–57.Google Scholar
  29. Grieve, R.A.F., Stoffler, D., and Deutsch, A., The Sudbury Structure: Controversial or Misunderstood?, J. Geophys. Res., 1991, vol. 96, pp. 22753–22764.Google Scholar
  30. Grieve, R.A.F. and Cintala, M.J., An Analysis of Differential Impact Melt-Crater Scaling and Implications for the Terrestrial Impact Record, Meteoritics, 1992, vol. 27, pp. 526–538.Google Scholar
  31. Grieve, R.A.F. and Cintala, M.J., Planetary Differences in Impact Melting, Adv. Space Res., 1997, vol. 20, pp. 1551–1560.CrossRefGoogle Scholar
  32. Grieve, R. and Therriault, A., Vredefort, Sudbury, Chicxulub: Three of a Kind?, Ann. Rev. Earth Planet. Sci., 2000, vol. 28, pp. 305–338.CrossRefGoogle Scholar
  33. Guillou, L., Mareschal, J.-C., Jaupart, C., et al., Heat Flow, Gravity and Structure of the Abitibi Belt, Superior Province, Canada: Implications for Mantle Heat Flow, Tectonophysics, 1994, vol. 122, pp. 103–123.Google Scholar
  34. Gupta, S.C., Ahrens, T.J., and Yang, W., Shock Induced Vaporization of Anhydrite CaSO4 and Calcite CaCO3, in APS Meeting Abstracts, 1999.Google Scholar
  35. Henkel, H. and Reimold, W.U., Geophysical Modeling and Reconstruction of the Vredefort Impact Structure, South Africa, Met. Plan. Sci., 1996, vol. 31, p. 59.Google Scholar
  36. Hildebrand, A.R., Penfield, G.T., Kring, D.A., et al., Chicxulub Crater: A Possible Cretaceous-Tertiary Boundary Impact Crater on the Yucatan Peninsula, Geology, 1991, vol. 19, pp. 867–871.CrossRefGoogle Scholar
  37. Ivanov, B.A., Bazilevskii, A.T., Krivchkov, V.P., et al., Impact Craters of Venus-Analysis of Venera 15 and 16 Data, J. Geophys. Res., 1986, vol. 91, pp. 413–430.Google Scholar
  38. Ivanov, B.A., The Morphometry of Impact Craters on Venus, Astron. Vestn., 1989, vol. 23, no.1, pp. 39–49.Google Scholar
  39. Ivanov, B.A., Nemchinov, I.V., Svetsov, V.A., et al., Impact Cratering on Venus: Physical and Mechanical Models, J. Geophys. Res. E, 1992, vol. 97, no.10, pp. 16167–16181.Google Scholar
  40. Ivanov, B.A. and Ford, P.G., The Depths of the Largest Impact Craters on Venus, 24th Lunar and Planet. Sci. Conf., 1993, pp. 689–690.Google Scholar
  41. Ivanov, B.A., Badukov, D.D., Yakovlev, O.I., et al., Degassing of Sedimentary Rocks Due to Chicxulub Impact: Hydrocode and Physical Simulations, Geol. Soc. Spec. Pap., 1996, vol. 307, pp. 125–139.Google Scholar
  42. Ivanov, B.A., Basilevsky, A.T., and Neukum, G., Atmospheric Entry of Large Meteoroids: Implication To Titan, Planet. Space Sci., 1997, vol. 45, pp. 993–1007.CrossRefGoogle Scholar
  43. Ivanov, B.A. and Deutsch, A., Sudbury Impact Event: Cratering Mechanics and Thermal History, in Large Meteorite Impacts and Planetary Evolution II, Dressler, B., and Sharpton, V.L., Eds., Boulder: Geological Soc. Am., 1999, pp. 389–397.Google Scholar
  44. Ivanov, B.A., Large Impact Crater Modeling: Chicxulub, Third International Conference on Large Meteorite Impacts, Nordlingen, Germany, 2003, Houston: Lunar Planet. Inst., 2003a, Abstract #4067; http://www.lpi.usra.edu/meet-ings/largeimpacts2003/pdf/4067.pdf.Google Scholar
  45. Ivanov, B.A., Modification of ANEOS for Rocks in Compression, Impact Cratering: Bridging the Gap Between Modeling and Observations, February, LPI Contrib., no. 1155, 2003, Houston: Lunar Planet. Inst., 2003b, p. 40.Google Scholar
  46. Ivanov, B., Multi-Ring Basins: Modeling Terrestrial Analogs, 40th Vernadsky/Brown Microsymposium on Comparative Planetology, Moscow, 2004, Moscow: Vernadsky Institute, 2004a, CD-ROM #30.Google Scholar
  47. Ivanov, B.A., Heating of the Lithosphere during Meteorite Cratering, Astron. Vestn., 2004b, vol. 38, no.4, pp. 304–318 [Sol. Syst. Res. (Engl. Transl.), vol. 38, no. 4, p. 266–279].Google Scholar
  48. Ivanov, B.A., Langenhorst, F., Deutsch, A., et al., Anhydrite EOS and Phase Diagram in Relation To Shock Decomposition, 35th Lunar and Planet. Sci. Conf., 2004, Abstract #1489.Google Scholar
  49. Ivanov, B.A., Shock Melting of Permafrost on Mars: Water Ice Multiphase Equation of State for Numerical Modeling and Its Testing, Lunar and Planet. Sci. Conf., 2005, Abstract #1232.Google Scholar
  50. James, D.E. and Fouch, M.J., VanDecar J.C., et al., Tectospheric Structure Beneath Southern Africa, Geophys. Res. Lett., 2001, vol. 28, no.13, pp. 2485–2488.CrossRefGoogle Scholar
  51. Jaupart, C. and Mareschal, J.C., The Thermal Structure and Thickness of Continental Roots, Lithos, 1999, vol. 48, pp. 93–114.CrossRefGoogle Scholar
  52. Krogh, T.E., Davis, D.W., and Corfu, F., Precise of U-Pb Zir-con and Baddeleyite Ages for the Sudbury Area, in The Geology and Ore Deposits of the Sudbury Structure, Pye, E.G., Naldrett, A.J., and Giblin, P.E., Eds., Ontario: Ontario Geological Survay, 1984, vol. 1, pp. 431–446.Google Scholar
  53. Kuznetsov, N.M., Kinetics of Shock-Wave Phase Transformation of Quartz, in Udarnye volny i ekstremal'nye sostoyaniya veshchestva (Shock Waves and Extreme States of Material) Fortov, V.E., Al'tshuler, L.V., Trunin, R.F., and Funtikov, A.I., Eds., Moscow: Nauka, 2000, pp. 199–218.Google Scholar
  54. Lana, C., Gibson, R.L., Kisters, A.F.M., et al., Archean Crustal Structure of the Kaapvaal Craton, South Africa-Evidence from the Vredefort Dome, Tectonophysics, 2003a, vol. 206, pp. 133–144.Google Scholar
  55. Lana, C., Gibson, R.L., and Reimold, W.U., Impact Tectonics in the Core of the Vredefort Dome, South Africa: Implications for Central Uplift Formation in Very Large Impact Structures, Met. Plan. Sci., 2003b, vol. 38, pp. 1093–1107.Google Scholar
  56. Lana, C., Reimold, W.U., Gibson, R.L., et al., Nature of the Archean Midcrust in the Core of the Vredefort Dome, Central Kaapvaal Craton, South Africa 1, Geochim. Cosmochim. Acta, 2004, vol. 68, pp. 623–642.CrossRefGoogle Scholar
  57. Landau, L. and Lifshits, E., Statisticheskaya fizika (Statistical Physics), Leningrad: Tekhniko-Teor. Literatura, 1951.Google Scholar
  58. Langenhorst, F., Deutsch, A., Hornemann, U., et al., On the Shock Behaviour of Anhydrite: Experimental Results and Natural Observations, 34th Lunar and Planet. Sci. Conf., 2003, Abstract #1638.Google Scholar
  59. Masaitis, V.L., Mikhailov, M.V., and Selivanovskaya, T.V., Popigaiskii meteoritnyi krater (Popigai Meteorite Crater), Moscow: Nauka, 1975.Google Scholar
  60. Masaitis, V.L., Danilin, A.N., Mashchak, M.S., et al., Geologiya astroblem (Geology of Astroblemes), Leningrad: Nedra, 1980.Google Scholar
  61. Masaitis, V.L. and Raikhlin, A.I., The Popigai Crater Was Formed by the Impact of an Ordinary Chondrite, Dokl. Akad. Nauk SSSR, 1986, vol. 286, no.6, pp. 159–163.Google Scholar
  62. Masaitis, V.L., Impactites from Popigai Crater, in Large Meteorite Impacts and Planetary Evolution, Grieve, R.A.F., Sharpton, V.L., and Dressler, B.O., Eds., Geol. Soc. Am. Spec. Pap., 1994, vol. 293, pp. 153–162.Google Scholar
  63. Masaitis, V.L., Mashchak, M.S., and Raikhlin, A.I., et. al., Almazonosnye impaktity Popigaiskoi astroblemy (Diamond-Bearing Impactites of the Popigai Astrobleme), St. Petersburg: VSEGEYa, 1998.Google Scholar
  64. Masaitis, V.L., Popigai Crater: Origin and Distribution of Diamond-Bearing Impactites, Met. Plan. Sci., 1998, vol. 33, pp. 349–359.Google Scholar
  65. Masaitis, V.L., Mashchak, M.S., and Naumov, M.V., Original Diameter and Depth of Erosion of the Popigai Impact Crater, Russia, Third International Conference on Large Meteorite Impacts, Nordlingen, Germany, 2003, Houston: Lunar Planet. Inst., 2003, Abstract #4039; http://www.lpi.usra.edu/meetings/largeimpacts2003/pdf/4039.pdf.Google Scholar
  66. McKinnon, W.B., Zahnle, K.J., Ivanov, B.A., et al., Cratering on Venus: Models and Observations, in Venus II, Bougher, S.W., Hunten, D.M., and Phillips, R.J., Eds., Tuscon: Univ. Arizona Press, 1997, pp. 969–1014.Google Scholar
  67. Melosh, H.J., Ryan, E.V., and Asphaug, E., Dynamic Fragmentation in Impacts: Hydrocode Simulation of Laboratory Impacts, J. Geophys. Res., 1992, vol. 97, pp. 14735–14759.Google Scholar
  68. Melosh, H.J., Impact Cratering–A Geologic Process, New York: Oxford, 1989. Translated under the title Udarnye kratery–geologicheskii protsess, Moscow: Mir, 1994.Google Scholar
  69. Melosh, H.J. and Ivanov, B.A., Impact Crater Collapse, Ann. Rev. Earth Planet. Sci., 1999, vol. 27, pp. 385–415.CrossRefGoogle Scholar
  70. Melosh, H.J., A New and Improved Equation of State for Impact Studies, 31th Lunar and Planet. Sci. Conf., Houston, 2000, Abstract #1903.Google Scholar
  71. Milkereit, B., Green, A., Wu, J., et al., Integrated Seismic and Borehole Geophysical Study of the Sudbury Igneous Complex, Geophys. Res. Lett., 1994a, vol. 21, pp. 931–934.CrossRefGoogle Scholar
  72. Milkereit, B., White, D.J., and Green, A.G., Towards an Improved Seismic Imaging Technique for Crustal Structures: The Lithoprobe Sudbury Experiment, Geophys. Res. Lett., 1994b, vol. 21, pp. 927–930.CrossRefGoogle Scholar
  73. Morgan, J. and Warner, M., and the Chicxulub Working Group. Size and Morphology of the Chicxulub Impact Crater, Nature, 1997, vol. 390, pp. 472–476.CrossRefGoogle Scholar
  74. Morgan, J.V., Warner, M.R., Collins, G.S., et al., Peak-Ring Formation in Large Impact Craters: Geophysical Constraints from Chicxulub, Tectonophysics, 2000, vol. 183, pp. 347–354.Google Scholar
  75. Moser, D.E., Flowers, R.M., and Hart, R.J., Birth of the Kaapvaal Tectosphere 3.08 Billion Years Ago, Science, 2001, vol. 291, no.5503, pp. 465–468.CrossRefPubMedGoogle Scholar
  76. Naldrett, A.J and Hewins, R.H, The Main Mass of the Sudbury Igneous Complex, in The Geology and Ore Deposits of the Sudbury Structure: Ontario Geological Survey Special Pye, E.G., Naldrett, A.J., and Giblin, P.E., Eds., Ontario: Ministry of Natural Resources of Canada, 1984, vol. 1, pp. 235–251.Google Scholar
  77. Nguuri, T.K., Gore, J., James, D.E., et al., Crustal Structure Beneath Southern Africa and Its Implications for the Formation and Evolution of the Kaapvaal and Zimbabwe Cratons, Geophys. Res. Lett., 2001, vol. 28, no.13, pp. 2502–2504.CrossRefGoogle Scholar
  78. Nikolaeva, O.V., Geochemistry of the Venera 8 Material Demonstrates the Presence of Continental Crust on Venus, Earth, Moon, and Planets, 1990, vol. 50, pp. 329–341.Google Scholar
  79. O'Keefe, J.D. and Ahrens, T.J., Complex Craters: Relationship of Stratigraphy and Rings To Impact Conditions, J. Geophys. Res., 1999, vol. 104, pp. 27091–27104.CrossRefGoogle Scholar
  80. Papadopoulos, G.A. and Plessa, A., Magnitude-Distance Relations for Earthquake-Induced Landslides in Greece, Engineering Geology, 2000, vol. 58, no.3–4, pp. 377–386.CrossRefGoogle Scholar
  81. Pierazzo, E., Vickery, A.M., and Melosh, H.J., A Reevaluation of Impact Melt Production, Icarus, 1997, vol. 127, pp. 408–423.CrossRefGoogle Scholar
  82. Pierazzo, E., Kring, D.A., and Melosh, H.J., Hydrocode Simulation of the Chicxulub Impact Event and the Production of Climatically Active Gases, J. Geophys. Res., 1998, vol. 103, pp. 28607–28625.CrossRefGoogle Scholar
  83. Pierazzo, E. and Melosh, H.J., Hydrocode Modeling of Chicxulub as An Oblique Impact Event, Tectonophysics, 1999, vol. 165, pp. 163–176.Google Scholar
  84. Pike, R.J., Control of Crater Morphology by Gravity and Target Type-Mars, Earth, Moon, 11th Lunar and Planet. Sci. Conf., New York: Pergamon, 1980, pp. 2159–2189.Google Scholar
  85. Pilkington, M. and Hildebrand, A.R., Three-Dimensional Magnetic Imaging of the Chicxulub Crater, J. Geophys., Res., 2000, vol. 105, pp. 23479–23492.Google Scholar
  86. Pope, K.O., Baines, K.H., Ocampo, A.C., et al., Impact Winter and the Cretaceous/Tertiary Extinctions: Results of a Chicxulub Asteroid Impact Model, Tectonophysics, 1994, vol. 128, pp. 719–725.Google Scholar
  87. Pope, K.O., Baines, K.H., Ocampo, A.C., et al., Energy, Volatile Production, and Climatic Effects of the Chicxulub Cretaceous/Tertiary Impact, J. Geophys. Res., 1997, vol. 102, pp. 21645–21664.CrossRefPubMedGoogle Scholar
  88. Reimold, W.U. and Gibson, R.L., Geology and Evolution of the Vredefort Impact Structure, South Africa, Afr. J. Earth Sci., 1996, vol. 23, no.2, pp. 125–162.CrossRefGoogle Scholar
  89. Ricoy, V., The Cantarell Breccia System, Southern Gulf Of Mexico: Structural Evolution and Support for An Origin Related To the Chixculub Meteorite Impact, EGS-AGU-EUG Joint Assembly, Nice, France, 2003, Abstract #13339.Google Scholar
  90. Roest, W.R. and Pilkington, M., Restoring Post-Impact Deformation at Sudbury: A Circular Argument, Geophys. Res. Lett., 1994, vol. 21, pp. 959–962.CrossRefGoogle Scholar
  91. Rozen, O.M., Bibikova, E.V., and Zhuravlev, A.B., Early Crust of the Anabar Shield: Age and Formation Models, in Rannyaya kora Zemli: sostav i vozrast (Early Crust of the Earth: Composition and Age), Mergasov, G.G., Ed., Moscow: Nauka, 1991, pp. 199–244.Google Scholar
  92. Rosen, O.M., Condie, K.C., Natapov, L.M., et al., Archean and Early Proterozoic Evolution of the Siberian Craton: A Preliminary Assessment, in Developments in Precambrian Geology, Windley, B.F., Ed., Amsterdam: Elsevier, 1994, pp. 411–459.Google Scholar
  93. Schmidt, R.M. and Housen, K.R., Some Recent Advances in the Scaling of Impact and Explosion Cratering, Int. J. Impact Eng., 1987, vol. 5, pp. 543–560.Google Scholar
  94. Shanks, W.S. and Schwerdtner, W.M., Crude Quantitative Estimates of the Original Northwest-Southwest Dimension of the Sudbury Structure, South Central Canadian Shield, Can. J. Earth Sci., 1991, vol. 28, pp. 1677–1686.Google Scholar
  95. Spray, J.G., Butler, R.F., and Thomson, L.M., Tectonic Influences on the Morphometry of the Sudbury Impact Structure: Implications for Terrestrial Cratering and Modeling, MAPS, 2004, vol. 31, no.2, pp. 287–301.Google Scholar
  96. Stevens, G., Armstrong, R.A., and Gibson, R.L., Pre-and Postimpact Metamorphism in the Core of the Vredefort Dome: Clues To Crustal Response at a Massive Meteorite Strike, Met. Plan. Sci., 1999, vol. 34(Suppl.), p. 112.Google Scholar
  97. Stoffler, D. and Langenhorst, F., Shock Metamorphism of Quartz in Nature and Experiment: I. Basic Observation and Theory, Meteoritics, 1994, vol. 29, pp. 155–181.Google Scholar
  98. Stoffler, D., Artemieva, N.A., Ivanov, B.F., et al., Origin and Emplacement of the Impact Formations at Chicxulub, Mexico, As Revealed by the ICDP Deep Drilling at Yaxcopoil-1 and by Numerical Modeling, Met. Plan. Sci., 2004, vol. 39, no.7, pp. 1035–1067.Google Scholar
  99. Stroenie zemnoi kory Anabarskogo shchita (Structure of the Terrestrial Crust of the Anabar Shield), Moralev, V.M., Ed., Moscow: Nauka, 1986.Google Scholar
  100. Surkov, Y.A. and Barsukov, V.L., Composition, Structure and Properties of Venus Rocks, Adv. in Space Res, 1985, vol. 5, pp. 17–29.CrossRefGoogle Scholar
  101. Swisher, C.C., Grajales-Nishimura, J.M., Montanari, A., et al., Coeval 40Ar/39Ar Ages of 65.0 Million Years Ago from Chicxulub Crater Melt Rock and Cretaceous-Tertiary Boundary Tektites, Science, 1992, vol. 257, pp. 954–958.Google Scholar
  102. Therriault, A.M., Grieve, R.A.F., and Reimold, W.U., Original Size of the Vredefort Structure: Implications for the Geological Evolution of the Witwatersrand Basin, Met. Plan. Sci., 1997, vol. 32, pp. 71–77.Google Scholar
  103. Thompson, S.L. and Lauson, H.S., Improvements in the Chart-D radiation hydrodynamic code III: Revised analytical equation of state, Albuquerque: Sandia Laboratories, 1972, SC-RR-71 0714.Google Scholar
  104. Turtle, E.P. and Pierazzo, E., Constraints on the Size of the Vredefort Impact Crater from Numerical Modeling, Met. Plan. Sci., 1998, vol. 33, pp. 483–490.Google Scholar
  105. Turtle, E.P., Pierazzo, E., and O'Brien, D.P., Numerical Modeling of Impact Heating and Cooling of the Vredefort Impact Structure, Met. Plan. Sci., 2003, vol. 38, pp. 293–303.Google Scholar
  106. Wieland, F., Gibson, R.L., Reimold, W.U., et al., Structural Evolution of the Central Uplift of the Vredefort Impact Structure, South Africa, Met. Plan. Sci., 2003, vol. 38(Suppl.), p. 5027.Google Scholar
  107. Wieland, F. and Reimold, W.U., Field and Laboratory Studies on Shatter Cones in the Vredefort Dome, South Africa, and Their Genesis, Met. Plan. Sci., 2003, vol. 38(Suppl.), p. 5016.Google Scholar
  108. Wu, J., Milkereit, B., and Boerner, D.E., Seismic Imaging of the Enigmatic Sudbury Structure, J. Geophys. Res., 1995, vol. 100, pp. 4117–4130.CrossRefGoogle Scholar
  109. Wunnemann, K. and Ivanov, B.A., Numerical Modelling of the Impact Crater Depth-Diameter Dependence in An Acoustically Fluidized Target, Planet. Space Sci., 2003, vol. 51, pp. 831–845.CrossRefGoogle Scholar
  110. Zharkov, V.N. and Kalinin, V.A., Uravneniya sostoyaniya tverdykh tel pri vysokikh davleniyakh i temperaturakh, Moscow: Nauka, 1968. Translated under the title Equations of State for Solids at High Pressures and Temperatures, New York: Consultants Bureau, 1971.Google Scholar
  111. Zeldovich, Ya.B. and Raizer, Yu.P., Fizika Udarnykh Voln i Vysokotemperaturnykh Gidrodinamicheskikh Yavlenii, Moscow: Nauka, 1966. Translated under the title Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, New York: Academic Press, 1967.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • B. A. Ivanov
    • 1
  1. 1.Institute for Dynamics of GeospheresRussian Academy of SciencesMoscowRussia

Personalised recommendations