Abstract
The latest version of the planetary part of the numerical ephemerides EPM (Ephemerides of Planets and the Moon) developed at the Institute of Applied Astronomy of the Russian Academy of Sciences is presented. The ephemerides of planets and the Moon were constructed by numerical integration in the post-Newtonian metric over a 140-year interval (from 1880 to 2020). The dynamical model of EPM2004 ephemerides includes the mutual perturbations from major planets and the Moon computed in terms of General Relativity with allowance for effects due to lunar physical libration, perturbations from 301 big asteroids, and dynamic perturbations due to the solar oblateness and the massive asteroid ring with uniform mass distribution in the plane of the ecliptic. The EPM2004 ephemerides resulted from a least-squares adjustment to more than 317000 position observations (1913–2003) of various types, including radiometric measurements of planets and spacecraft, CCD astrometric observations of the outer planets and their satellites, and meridian and photographic observations. The high-precision ephemerides constructed made it possible to determine, from modern radiometric measurements, a wide range of astrometric constants, including the astronomical unit AU = (149597870.6960 ± 0.0001) km, parameters of the rotation of Mars, the masses of the biggest asteroids, the solar quadrupole moment J 2 = (1.9 ± 0.3) × 10−7, and the parameters of the PPN formalism β and γ. Also given is a brief summary of the available state-of-the-art ephemerides with the same precision: various versions of EPM and DE ephemerides from the Jet Propulsion Laboratory (JPL) (USA) and the recent versions of these ephemerides—EPM2004 and DE410—are compared. EPM2004 ephemerides are available via FTP at ftp://qua-sar.ipa.nw.ru/incoming/EPM2004.
This is a preview of subscription content, access via your institution.
REFERENCES
Abalakin, V.K., Osnovy efemeridnoi astronomii (Fundamentals of Ephemeris Astronomy), Dagaev, M.M. and Rakhlin, I.E., Eds., Moscow: Nauka, 1979.
Akim, E.L. and Stepanianz, V.A., Numerical Theory of the Motion of the Earth and Venus Derived from Data of Radar and Optical Observations and Tracking Data for the Venera 9 and 10 Satellites, Dokl. Akad. Nauk SSSR, 1977, vol. 233, pp. 314–317 [Sov. Phys. Dokl. (Engl. Transl.), 1977, vol. 22, no. 3, pp. 135–137].
Akim, E h.L., Brumberg, V.A., Kislik, M.D., et al., A Relativistic Theory of Motion of Inner Planets, in Relativity in Celestial Mechanics and Astrometry, IAU Symp. 114, Kovalevsky, J. and Brumberg, V.A., Eds., Dordrecht: Kluwer, 1986, pp. 63–68.
Ash, M.E., Shapiro, I.I., and Smith, W.B., Astronomical Constants and Planetary Ephemerides Deduced from Radar and Optical Observations, Astron. J., 1967, vol. 72, pp. 332–350.
Bretagnon, P. and Francou, G., Planetary Theories in Rectangular and VSOP87 Solutions, Astron. Astrophys., 1988, vol. 202, pp. 309–315.
Brumberg, V.A., Relyativistskaya nebesnaya mekhanika (Relativistic Celestial Mechanics), Demin, V.G., Ed., Moscow: Nauka, 1972.
Dunham, D.W., Goffin, E., Manek, J., et al., Asteroidal Occultation Results Multiply Helped by HIPPARCOS, J. Ital. Astron. Soc., 2002, vol. 73, no.3, pp. 662–665.
Eckert, W.J., Brouwer, D., and Clemence, G.M., Coordinates of the Five Outer Planets 1653–2060, Astron. Pap, 1951, vol. 12.
Eroshkin, G.I., Glebova, N.I., and Fursenko, M.A., Dopolneniya k Astronomicheskomu ezhegodniku (Additions to the Astronomical Yearbook), St. Petersburg: Inst. Teor. Astron. Ross. Akad. Nauk, 1992, vol. 27-28A, pp. 1–8.
Everhart, E., Implicit Single-Sequence Methods for Integrating Orbits, Celest. Mech., 1974, vol. 10, pp. 35–55.
Fienga, A. and Simon, J.-L., Analytical and Numerical Studies of Asteroids Perturbations on Solar System Planet Dynamics, Astron. Astrophys., 2005, vol. 429, pp. 361–367.
Folkner, W.M., Yoder, C.F., Yuan, D.N., et al., Interior Structure and Seasonal Mass Redistribution of Mars from Radio Tracking of Mars Pathfinder, Science, 1997, vol. 278, pp. 1749–1752.
Glebova, N.I., On the Improvement of the Ephemerides of Inner Planets on the Basis of Optical and Radar Data Treatment for 1960–1980, Byull. Inst. Teor. Astron., 1984, vol. 15, pp. 241–250.
Hilton, J.L., Asteroid Mass and Densities, in Asteroids III, Bottke, W.F., Jr., Cellino, A., Paolicchi, P., and Binzel, R.P., Eds., Tucson: Univ. Arizona Press, 2002, pp. 103–112.
Kislik, M.D., Koljuka, Yu.F., Kotel’nikov, V.A., et al., A General Relativistic Theory of Motion of the Inner planets of the Solar System, Dokl. Akad. Nauk SSSR, 1980, vol. 255, no.3, pp. 545–547 [Sov. Phys. Dokl. (Engl. Transl.), 1980, vol. 25, no. 11, pp. 867–869].
Krasinsky, G.A., Pitjeva, E.V., Sveshnikov, M.L., and Sveshnikova, E.S., Some Results from the Reduction of Radar, Laser, and Optical Observations of the Inner Planets and the Moon, Dokl. Akad. Nauk SSSR, 1981, vol. 261, pp.1320–1324 [Sov. Phys. Dokl. (Engl. Transl.), 1981, vol. 26, no. 12, pp. 1103–1105].
Krasinsky, G.A., Pitjeva, E.V., Sveshnikov, M.L., and Sveshnikova, E.S., Improvement of the Ephemerides of the Inner Planets and the Moon using Radar Measurements, Lunar Laser and Meridian Observations in 1961-1980, Byull. Inst. Teor. Astron., 1982, vol. 15, no.3, pp. 145–164.
Krasinsky, G.A., Pitjeva, E.V., Sveshnikov, M.L., and Chunajeva, L.I., The Motion of Major Planets from Observations 1769–1988 and Some Astronomical Constants, Celest. Mech. Dyn. Astron., 1993, vol. 55, pp. 1–23.
Krasinsky, G.A. and Vasilyev, M.V., Universal Programming System ERA for High Precision Applications of Dynamic and Ephemeris Astronomy, in Dynamics and astrometry of natural and artificial celestial bodies, IAU Coll. 165, Wytrzyszczak, I.M., Lieske, J.H., and Feldman, R.A., Eds., Dordrecht: Kluwer, 1997, pp. 239–244.
Krasinsky, G.A., Pitjeva, E.V., Vasilyev, M.V., and Yagudina, E.I., Estimating Masses of Asteroids, Commun. IAA RAS, 2001, vol. 139, pp. 1–43.
Krasinsky, G.A., Selenodynamical Parameters from Analysis of LLR Observations of 1970–2001, Commun. IAA RAS, 2002, vol. 148, pp. 1–27.
Krasinsky, G.A., Pitjeva, E.V., Vasilyev, M.V., and Yagudina, E.I., Hidden Mass in the Asteroid Belt, Icarus, 2002, vol. 158, pp. 98–105.
Mignard, F., Report of the IAU Working Group on ICRS, in Towards models and constants for sub-microarcsecond astrometry, Johnston, K.J., McCarthy, D.D., Luzum, B.J., and Kaplan, G.H., Eds., Washington, DC, USA: U.S. Naval Observatory, 2000, pp. 10–19.
Newhall, X.X., Standish, E.M., Jr., and Williams, J.G., DE102: a Numerically Integrated Ephemerides of the Moon and Planets Spanning Forty-four Centuries, Astron. Astrophys., 1983, vol. 125, pp. 150–167.
Oesterwinter, C. and Cohen, Ch.J., New Orbital Elements for Moon and Planets, Celest. Mech., 1972, vol. 5, pp. 317–395.
Ostro, S.J., Hudson, R.S., Berner, A.M., et al., Asteroid Radar Astronomy, in Asteroids III, Bottke, W.F., Jr., Cellino, A., Paolicchi, P., and Binzel, R.P., Eds., Tucson: Univ. Arizona Press, 2002, pp. 289–312.
Pitjeva, E.V., Study of the Mars Dynamics based on the Analysis of Observations of the Viking and Pathfinder Landers, Tr. Inst. Prikl. Astron. Ross. Akad. Nauk, 1999, vol. 4, pp. 22–35.
Pitjeva, E.V., Modern Numerical Ephemerides of Planets and the Importance of Ranging Observations for Their Creation, Celest. Mech. Dyn. Astron., 2001a, vol. 80, pp. 249–271.
Pitjeva, E.V., Progress in the Determination of Some Astronomical Constants from Radiometric Observations of Planets and Spacecraft, Astron. Astrophys., 2001b, vol. 371, pp. 760–765.
Pitjeva, E.V., Modern Numerical Theories of the Motion of the Sun, Moon and Major Planets: a Comprehensive Commentary to the Astronomical Yearbook, Tr. Inst. Prikl. Astron. Ross. Akad. Nauk, 2004, vol. 10, pp. 112–134.
Standish, E.M., Keesey, M.S.W., and Newhall, X.X., JPL Development Ephemeris Number 96, JPL Tech. Rep., 1976, vol. 32-1603, pp. 1–36.
Standish, E.M., Jr., The Observational Basis for JPL’s DE200 Planetary Ephemerides of the Astronomical Almanac, Astron. Astrophys, 1990, vol. 233, pp. 252–271.
Standish, E.M., Newhall, X.X., Williams, J.G., and Folkner, W.M., JPL Planetary and Lunar Ephemerides, DE403/LE403, Interoffice Memorandum, 1995, vol. 314.10-127, pp. 1–22.
Standish, E.M., JPL Planetary and Lunar Ephemerides, DE405/LE405, Interoffice Memorandum, 1998, vol. 312, F-98-048, pp. 1–18.
Standish, E.M. and Fienga, A., Accuracy Limit of Modern Ephemerides Imposed by Uncertainties in Asteroid Masses, Astron. Astrophys., 2002, vol. 384, pp. 322–328.
Standish, E.M., The Astronomical Unit Now, in Transit of Venus: new views of the solar system and galaxy, IAU Coll. 196, Kurtz, D.W., Ed., Cambridge: Cambridge University Press, 2005 (in press).
Sveshnikov, M.L., Reduction of Washington Observations of Major Planets and the Sun to the Uniform System, Byull. Inst. Teor. Astron., 1974, vol. 152, pp. 563–570.
Sveshnikov, M.L., personal communication, 2000.
Tedesco, E.F., Noah, P.V., Noah, M., and Price, S.D., The Supplemental IRAS Minor Planet Survey, Astron. J., 2002a, vol. 123, pp. 1056–1085.
Tedesco, E.F., Egan, M.P., and Price, S.D., The Midcourse Space Experiment Infrared Minor Planet Survey, Astron. J., 2002b, vol. 124, pp. 583–591.
Yoder, C.F. and Standish, E.M., Martian Precession and Rotation from Viking Lander Range Data, J. Geophys. Res., Ser. E, 1997, vol. 102, no.2, pp. 4065–4080.
Yoder, C.F., Konoplev, A.S., Yuan, D.N., et al., Fluid Core Size of Mars from Detection of the Solar Tide, Science, 2003, vol. 300, pp. 299–303.
Author information
Authors and Affiliations
Additional information
__________
Translated from Astronomicheskii Vestnik, Vol. 39, No. 3, 2005, pp. 202–213.
Original Russian Text Copyright © 2005 by Pitjeva.
Rights and permissions
About this article
Cite this article
Pitjeva, E.V. High-Precision Ephemerides of Planets—EPM and Determination of Some Astronomical Constants. Sol Syst Res 39, 176–186 (2005). https://doi.org/10.1007/s11208-005-0033-2
Received:
Issue Date:
DOI: https://doi.org/10.1007/s11208-005-0033-2