Skip to main content
Log in

Numerical simulation of seasonal dynamics of water vapor in the Martian atmosphere

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The seasonal evolution of the H2O snow in the Martian polar caps and the dynamics of water vapor in the Martian atmosphere are studied. It is concluded that the variations of the H2O mass in the polar caps of Mars are determined by the soil thermal regime in the polar regions of the planet. The atmosphere affects water condensation and evaporation in the polar caps mainly by transferring water between the polar caps. The stability of the system implies the presence of a source of water vapor that compensates for the removal of water from the atmosphere due to permanent vapor condensation in the polar residual caps. The evaporation of the water ice that is present in the surface soil layers in the polar regions of the planet is considered as such a source. The annual growth of the water-ice mass in the residual polar caps is estimated. The latitudinal pattern of the seasonal distribution of water vapor in the atmosphere is obtained for the stable regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • V.I. Aleshin (1968) ArticleTitleAn Estimate for the Mixing Length from Stellar-Variability Theory Astron. Zh. 45 IssueID1 95–102

    Google Scholar 

  • V.I. Aleshin (1996) ArticleTitleSeasonal Variation of Atmospheric Pressure on Mars Astron. Vestn. 30 IssueID6 534–540

    Google Scholar 

  • V.I. Aleshin (2003) ArticleTitleDynamics of the Martian Atmosphere-Soil-Polar Caps System Astron. Vestn. 37 IssueID3 220–228

    Google Scholar 

  • J.R. Barnes (1990) ArticleTitleTransport of Dust of High Northern Latitudes in a Martian Polar Warning J. Geophys. Res., Ser. B 95 IssueID2 1381–1400

    Google Scholar 

  • R.T. Clancy A.W. Grossman M.J. Wolff et al. (1996) ArticleTitleWater Vapor Saturation at Low Altitudes Around Mars Aphelion: A Key to Mars Climate? Icarus 122 36–62

    Google Scholar 

  • J.P. Cox R.T. Giuli (1968) Principles of Stellar Structure Gordon and Breach New York

    Google Scholar 

  • D.W. Davies (1981) ArticleTitleThe Mars Water Cycle Icarus 42 398–414

    Google Scholar 

  • F.P. Fanale J.R. Salvail A.P. Sent S.E. Postawko (1986) ArticleTitleGlobal Distribution and Migration of Sub-Surface on Mars Icarus 67 1–18

    Google Scholar 

  • R.M. Haberle B.M. Jakosky (1990) ArticleTitleSublimation and Transport of Water from the North Residual Polar Cap on Mars J. Geophys. Res., Ser. B 95 IssueID2 1423–1437

    Google Scholar 

  • R.M. Haberle J.R. Barnes J.R. Murphy et al. (1997) ArticleTitleMeteorological Prediction for the Mars Pathfinder Lander J. Geophys. Res. 102 13301–13311

    Google Scholar 

  • R.M. Haberle M.M. Joshi J.R. Murphy et al. (1999) ArticleTitleGeneral Circulation Model Simulations of the Mars Pathfinder Atmospheric Structure Investigation. Meteorology data J. Geophys. Res., Ser. E 104 IssueID4 8957–8974

    Google Scholar 

  • F. Hourdin P. Le ParticleVan F. Forget O. Talagrand (1993) ArticleTitleMeteorological Variability and the Annual Surface Pressure Cycle on Mars J. Atmosph. Sci. 50 3625–3649

    Google Scholar 

  • F. Hourdin F. Forget O. Talagrand (1995) ArticleTitleThe Sensitivity of the Martian Surface Pressure and Atmospheric Mass Budget to Various Parameters: a Comparison Between Numerical Simulations and Viking Observations J. Geophys. Res., Ser. E 100 IssueID3 5501–5523

    Google Scholar 

  • B.M. Jakosky C.B. Farmer (1982) ArticleTitleThe Seasonal and Global Behavior of Water Vapor in the Mars Atmosphere: Complete Global Results of the Viking Atmospheric Water Detector Experiment J. Geophys. Res. 87 2999–3019

    Google Scholar 

  • B.M. Jakosky (1983) ArticleTitleThe Role of Seasonal Reservoirs in the Mars Water Cycle, II, Coupled Models of the Regolith, the Polar Caps, and Atmospheric Transport Icarus 55 19–39

    Google Scholar 

  • R. Kahn (1990) ArticleTitleIce Haze, Snow, and the Mars Water Cycle J. Geophys. Res., Ser. B 95 IssueID9 14677–14693

    Google Scholar 

  • A. Khrgian (1958) Fizika atmosfery Nauka Moscow

    Google Scholar 

  • V.I. Moroz (1967) Fizika planet Nauka Moscow

    Google Scholar 

  • V.I. Moroz V.V. Kerzhanovich V.A. Krasnopol’skii (1991) ArticleTitleEngineer model of the Martian atmosphere for Mars-94 (MA-90) project Kosm. Issled. 29 IssueID1 3–94

    Google Scholar 

  • Ono, A.M. and Paige, D.A., IRTM Observations of Martian South Polar Frosts, Amer.Astron. Soc. DPS meeting, 1996, no. 28, Abstract no. 02.11.

  • M.I. Richardson (1999) A General Circulation Model Study of the Mars Water Cycle Ph.D. Thesis Univ. of California Los Angeles

    Google Scholar 

  • M.I. Richardson R.J. Wilson (2002) ArticleTitleInvestigation of the Nature and Stability of the Martian Seasonal Water Cycle with a General Circulation Model J. Geophys. Res., Ser. E 107 IssueID5 101029

    Google Scholar 

  • J.T. Schofield J.R. Barnes D. Crisp et al. (1997) ArticleTitleThe Mars Pathfinder Atmospheric Structure Investigation. Meteorology (ASI/MET) Experiment Science 278 1752–1757

    Google Scholar 

  • M. Smith (2002) ArticleTitleThe Annual Cycle of Water on Mars as Observed by Thermal Emission Spectrometer J. Geophys. Res., Ser. E 107 IssueID11 5115

    Google Scholar 

  • S.G. Warren J.W. Warren J.F. Firestone (1990) ArticleTitleSpectral Albedo and Emissivity of Martian Polar Caps: Model Results J. Geophys. Res., Ser. B 95 IssueID9 14717–14741

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Astronomicheskii Vestnik, Vol. 38, No. 6, 2004, pp. 497–503.

Original Russian Text Copyright © 2004 by Aleshin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleshin, V.I. Numerical simulation of seasonal dynamics of water vapor in the Martian atmosphere. Sol Syst Res 38, 434–440 (2004). https://doi.org/10.1007/s11208-005-0011-8

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11208-005-0011-8

Keywords

Navigation