Abstract
Restoration of solar images to achieve near diffraction-limited spatial resolution is commonly implemented on large-aperture solar telescopes. However, the extent of the restored field-of-view is typically only 100′′ or even smaller. This study reports on wide-field image restoration of G-band and Ca ii K images obtained with the 0.7-meter Vacuum Tower Telescope (VTT) at Observatorio del Teide, Tenerife, Spain. The Kiepenheuer Adaptive Optics System (KAOS) at the VTT provides a field-of-view with a diameter of 270′′. Time series of datasets with 100 images were acquired with a large-format (7920 × 6004 pixels) CMOS imager at a frame rate of 30 Hz. An experimental optical setup that enabled wide-field imaging is briefly presented. Results from speckle-masking imaging and Multi-Frame Blind Deconvolution (MFBD) demonstrate the unique potential of the VTT for wide-field imaging. Power spectral analysis quantifies the instrument performance as a function of time and with distance from the lock point of the AO system. Further science capabilities are established using Local Correlation Tracking (LCT), Background-subtracted Solar Activity Maps (BaSAMs), and image quality/seeing metrics. In summary, commercial off-the-shelf camera systems can become an asset to sub-meter-class solar telescopes and open up new science opportunities at the interface between large-aperture and synoptic solar telescopes.












Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data Availability
No datasets were generated or analysed during the current study.
References
Beck, C., Rezaei, R., Fabbian, D.: 2011, Stray-light contamination and spatial deconvolution of slit-spectrograph observations. Astron. Astrophys. 535, A129. DOI.
Berkefeld, T., Soltau, D., Schmidt, D., von der Lühe, O.: 2010, Adaptive optics development at the German solar telescopes. Appl. Opt. 49, G155. DOI.
Cagigal, M.P., Canales, V.E.: 2000, Generalized fried parameter after adaptive optics partial wave-front compensation. J. Opt. Soc. Am. A 17, 903. DOI.
Cao, W., Gorceix, N., Coulter, R., Ahn, K., Rimmele, T.R., Goode, P.R.: 2010, Scientific instrumentation for the 1.6 m new solar telescope in Big Bear. Astron. Nachr. 331, 636. DOI.
Carlsson, M., De Pontieu, B., Hansteen, V.H.: 2019, New view of the solar chromosphere. Annu. Rev. Astron. Astrophys. 57, 189. DOI.
de Boer, C.R.: 1993, Speckle-Interferometrie und ihre Anwendung auf die Sonnenbeobachtung. PhD thesis, Georg-August Universität Göttingen, Germany.
de Boer, C.R., Kneer, F., Nesis, A.: 1992, Speckle observations of solar granulation. Astron. Astrophys. 257, L4.
Deng, H., Zhang, D., Wang, T., Ji, K., Wang, F., Liu, Z., Xiang, Y., Jin, Z., Cao, W.: 2015, Objective image-quality assessment for high-resolution photospheric images by median filter-gradient similarity. Sol. Phys. 290, 1479. DOI.
Denker, C.: 2010, Instrument and data analysis challenges for imaging spectropolarimetry. Astron. Nachr. 331, 648. DOI.
Denker, C., Verma, M.: 2019, Background-subtracted solar activity maps. Sol. Phys. 294, 71. DOI.
Denker, C., Mascarinas, D., Xu, Y., Cao, W., Yang, G., Wang, H., Goode, P.R., Rimmele, T.: 2005, High-spatial-resolution imaging combining high-order adaptive optics, frame selection, and speckle masking reconstruction. Sol. Phys. 227, 217. DOI.
Denker, C., Deng, N., Rimmele, T.R., Tritschler, A., Verdoni, A.: 2007, Field-dependent adaptive optics correction derived with the spectral ratio technique. Sol. Phys. 241, 411. DOI.
Denker, C., Dineva, E., Balthasar, H., et al.: 2018b, Image quality in high-resolution and high-cadence solar images. Sol. Phys. 5, 236. DOI.
Denker, C., Kuckein, C., Verma, M., et al.: 2018a, Data analysis and management for high-resolution solar physics – image restoration and imaging spectroscopy at the GREGOR solar telescope. Astrophys. J. Suppl. Ser. 236, 5. DOI.
Doerr, H.-P., Steinmetz, T., Holzwarth, R., Kentischer, T., Schmidt, W.: 2012, A laser frequency comb system for absolute calibration of the VTT echelle spectrograph. Sol. Phys. 280, 663. DOI.
Fried, D.L.: 1966, Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J. Opt. Soc. Am. A 56, 1372. DOI.
Fried, D.L., Mevers, G.E.: 1974, Evaluation of \(r_{0}\) for propagation down through the atmosphere. Appl. Opt. 13, 2620. DOI.
Hagenaar, H.J., Shine, R.A.: 2005, Moving magnetic features around sunspots. Astrophys. J. 635, 659. DOI.
Helmli, F.S., Scherer, S.: 2001, Adaptive shape from focus with an error estimation in light microscopy. In: Lončarić, S., Babić, H. (eds.) Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis. In Conjunction with 23rd International Conference on Information Technology Interfaces, IEEE Cat. No. 01EX480, 188. DOI.
Kamlah, R., Verma, M., Diercke, A., Denker, C.: 2021, Wavelength dependence of image quality metrics and seeing parameters and their relation to adaptive optics performance. Sol. Phys. 296, 29. DOI.
Korff, D.: 1973, Analysis of a method for obtaining near-diffraction-limited information in the presence of atmospheric turbulence. J. Opt. Soc. Am. A 63, 971.
Kuckein, C., Denker, C., Verma, M., et al.: 2017, sTools – a data reduction pipeline for the GREGOR Fabry-Pérot interferometer and the high-resolution fast imager at the GREGOR solar telescope. In: Vargas Domínguez, S., Kosovichev, A.G., Antolin, P., Harra, L. (eds.) Fine Structure and Dynamics of the Solar Atmosphere 327, 20. DOI.
LaVision: 2021a, Product Manual for DaVis 10.2 Software. LaVision GmbH, Göttingen, Germany.
LaVision: 2021b, Product Manual for Imager MX CXP. LaVision GmbH, Göttingen, Germany.
Löfdahl, M.G.: 2002, Multi-frame blind deconvolution with linear equality constraints. In: Bones, P.J., Fiddy, M.A., Millane, R.P. (eds.) Image Reconstruction from Incomplete Data, Proc. SPIE 4792, 146. DOI.
Löfdahl, M.G., Hillberg, T., de la Cruz Rodríguez, J., Vissers, G., Andriienko, O., Scharmer, G.B., Haugan, S.V.H., Fredvik, T.: 2021, SSTRED: data- and metadata-processing pipeline for CHROMIS and CRISP. Astron. Astrophys. 653, A68. DOI.
Löhner-Böttcher, J., Schmidt, W., Doerr, H.-P., Kentischer, T., Steinmetz, T., Probst, R.A., Holzwarth, R.: 2017, LARS: an absolute reference spectrograph for solar observations. Upgrade from a prototype to a turn-key system. Astron. Astrophys. 607, A12. DOI.
Lomb, N.R.: 1976, Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447. DOI.
Mikurda, K., von der Lühe, O.: 2006, High resolution solar speckle imaging with the extended knox-Thompson algorithm. Sol. Phys. 235, 31. DOI.
Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Sol. Phys. 275, 3. DOI.
Popowicz, A., Radlak, K., Bernacki, K., Orlov, V.: 2017, Review of image quality measures for solar imaging. Sol. Phys. 292, 187. DOI.
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: 1992, Numerical Recipes in C. The Art of Scientific Computing, Cambridge University Press, New York.
Pruthvi, H., Roth, M.: 2023, The new HELLRIDE at the vacuum tower telescope. Sol. Phys. 298, 41. DOI.
Puschmann, K.G., Beck, C.: 2011, Application of speckle and (multi-object) multi-frame blind deconvolution techniques on imaging and imaging spectropolarimetric data. Astron. Astrophys. 533, A21. DOI.
Puschmann, K.G., Sailer, M.: 2006, Speckle reconstruction of photometric data observed with adaptive optics. Astron. Astrophys. 454, 1011. DOI.
Quintero Noda, C., Schlichenmaier, R., Bellot Rubio, L.R., Löfdahl, M.G., Khomenko, E., Jurčák, J., et al.: 2022, The European solar telescope. Astron. Astrophys. 666, A21. DOI.
Rimmele, T.R., Warner, M., Keil, S.L., Goode, P.R., Knölker, M., et al.: 2020, The Daniel K. Inouye Solar Telescope – observatory overview. Sol. Phys. 295, 172. DOI.
Sánchez Almeida, J., Asensio Ramos, A., Trujillo Bueno, J., Cernicharo, J.: 2001, G-band spectral synthesis in solar magnetic concentrations. Astrophys. J. 555, 978.
Scargle, J.D.: 1982, Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835. DOI.
Scharmer, G.B., Bjelksjo, K., Korhonen, T.K., Lindberg, B., Petterson, B.: 2003, The 1-meter Swedish solar telescope. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 4853, 341. DOI.
Schmidt, W., von der Lühe, O., Volkmer, R., Denker, C., Solanki, S.K., Balthasar, H., et al.: 2012, The 1.5 meter solar telescope GREGOR. Astron. Nachr. 333, 796. DOI.
Schrijver, C.J., Hagenaar, H.J., Title, A.M.: 1997, On the patterns of the solar granulation and supergranulation. Astrophys. J. 475, 328. DOI.
Schröter, E.H., Soltau, D., Wiehr, E.: 1985, The German solar telescopes at the Observatorio del Teide. Vistas Astron. 28, 519. DOI.
Schüssler, M., Shelyag, S., Berdyugina, S., Vögler, A., Solanki, S.K.: 2003, Why solar magnetic flux concentrations are bright in molecular bands. Astrophys. J. Lett. 597, L173.
So, C.W., Yuen, E.L.H., Leung, E.H.F., Pun, J.C.S.: 2024, Solar image quality assessment: a proof of concept using variance of Laplacian method and its application to optical atmospheric condition monitoring. Publ. Astron. Soc. Pac. 136, 044504. DOI.
Sobotka, M., Brandt, P.N., Simon, G.W.: 1999, Fine structure in sunspots. III. Penumbral grains. Astron. Astrophys. 348, 621.
Soltau, D., Acton, D.S., Kentischer, T., Roser, M., Schmidt, W., Stix, M., von der Luhe, O.: 1997, Adaptive optics at the German VTT on Tenerife. In: Schmieder, B., del Toro Iniesta, J.C., Vazquez, M. (eds.) 1st Advances in Solar Physics Euroconference. Advances in Physics of Sunspots, Astron. Soc. Pac. Conf. Ser. 118, 351.
Srivastava, A.K., Kuridze, D., Zaqarashvili, T.V., Dwivedi, B.N.: 2008, Intensity oscillations observed with hinode near the South Pole of the Sun: leakage of low frequency magneto-acoustic waves into the solar corona. Astron. Astrophys. 481, L95. DOI.
Steiner, O., Hauschildt, P.H., Bruls, J.: 2001, Radiative properties of magnetic elements. I. Why are G-band bright points bright? Astron. Astrophys. 372, L13.
Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L.D., Owens, J.K.: 2008, The solar optical telescope for the hinode mission: an overview. Sol. Phys. 249, 167. DOI.
Uitenbroek, H., Tritschler, A.: 2006, The contrast of magnetic elements in synthetic CH- and CN-band images of solar magnetoconvection. Astrophys. J. 639, 525.
van Noort, M., Rouppe van der Voort, L., Löfdahl, M.G.: 2005, Solar image restoration by use of multi-frame blind de-convolution with multiple objects and phase diversity. Sol. Phys. 228, 191. DOI.
Verma, M., Denker, C.: 2011, Horizontal flow fields observed in hinode G-band images. I. Methods. Astron. Astrophys. 529, A153.
Verma, M., Kummerow, P., Denker, C.: 2018, On the extent of the moat flow in axisymmetric sunspots. Astron. Nachr. 339, 268. DOI.
Verma, M., Balthasar, H., Deng, N., Liu, C., Shimizu, T., Wang, H., Denker, C.: 2012, Horizontal flow fields observed in hinode G-band images. II. Flow fields in the final stages of sunspot decay. Astron. Astrophys. 538, A109. DOI.
von der Lühe, O.: 1984, Estimating Fried’s parameter from a time series of an arbitrary resolved object imaged through atmospheric turbulence. J. Opt. Soc. Am. A 1, 510. DOI.
von der Lühe, O.: 1998, High-resolution observations with the German vacuum tower telescope on Tenerife. New Astron. Rev. 42, 493. DOI.
von der Lühe, O., Soltau, D., Berkefeld, T., Schelenz, T.: 2003, KAOS: adaptive optics system for the vacuum tower telescope at Teide Observatory. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 4853, 187. DOI.
Wilken, V., de Boer, C.R., Denker, C., Kneer, F.: 1997, Speckle measurements of the centre-to-limb variation of the solar granulation. Astron. Astrophys. 325, 819.
Wöger, F., von der Lühe, O.: 2007, Field dependent amplitude calibration of adaptive optics supported solar speckle imaging. Appl. Opt. 46, 8015. DOI.
Wöger, F., von der Lühe, O.: 2008, KISIP: a software package for speckle interferometry of adaptive optics corrected solar data. In: Bridger, A., Radziwill, N.M. (eds.) Advanced Software and Control for Astronomy II, Proc. SPIE 7019, 70191E. DOI.
Wöger, F., von der Lühe, O., Reardon, K.: 2008, Speckle interferometry with adaptive optics corrected solar data. Astron. Astrophys. 488, 375. DOI.
Wöger, F., Rimmele, T., Ferayorni, A., Beard, A., Gregory, B.S., Sekulic, P., Hegwer, S.L.: 2021, The Daniel K. Inouye Solar Telescope (DKIST)/Visible Broadband Imager (VBI). Sol. Phys. 296, 145. DOI.
Acknowledgments
The Vacuum Tower Telescope (VTT) at the Spanish Observatorio del Teide of the Instituto de Astrofísica de Canarias is operated by the German consortium of the Institut für Sonnenphysik (KIS) in Freiburg, the Leibniz-Institut für Astrophysik Potsdam (AIP), and the Max-Planck-Institut für Sonnensystemforschung (MPS) in Göttingen. This research has made use of NASA’s Astrophysics Data System (ADS). DeepL Write was used in copy editing (spelling, grammar, and readability) of the manuscript. We would like to thank the referee for very valuable and substantial comments, which helped to significantly to improve the manuscript.
Funding
This study was supported by grants KO 6283/2-1 and VE 1112/1-1 of the Deutsche Forschungsgemeinschaft (DFG). AP received funding from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No. 833251 PROMINENT ERC-ADG 2018).
Author information
Authors and Affiliations
Contributions
The individual contributions by the authors are listed according to the Contributor Roles Taxonomy (credit.niso.org). Robert Kamlah: formal analysis, investigation, software, validation, visualization, and writing – original draft; Meetu Verma: formal analysis, investigation, project administration, software, supervision, validation, visualization, and writing – review & editing; Carsten Denker: conceptualization, data curation, formal analysis, investigation, project administration, software, supervision, validation, visualization, and writing – review & editing; Ioannis Kontogiannis: investigation and writing – review & editing; Alexander G. M. Pietrow: investigation and writing – review & editing; Jürgen Rendtel: investigation and writing – review & editing; Emily Lößnitz: investigation and writing – review & editing; Arooj Faryad: investigation and writing – review & editing; Reiner Volkmer: project administration – review & editing; Rolf Schlichenmaier: project administration – review & editing; Thomas Berkefeld: resources – review & editing; Miguel Esteves: resources – review & editing; Olivier Grassin: resources – review & editing; Markus Roth: project administration – review & editing
Corresponding author
Ethics declarations
Competing Interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kamlah, R., Verma, M., Denker, C. et al. Wide-Field Image Restoration of G-Band and Ca ii K Images Containing Large and Complex Active Regions. Sol Phys 300, 62 (2025). https://doi.org/10.1007/s11207-025-02472-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11207-025-02472-6
Keywords
Profiles
- Alexander G. M. Pietrow View author profile


