Skip to main content
Log in

Wide-Field Image Restoration of G-Band and Ca ii K Images Containing Large and Complex Active Regions

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Restoration of solar images to achieve near diffraction-limited spatial resolution is commonly implemented on large-aperture solar telescopes. However, the extent of the restored field-of-view is typically only 100′′ or even smaller. This study reports on wide-field image restoration of G-band and Ca ii K images obtained with the 0.7-meter Vacuum Tower Telescope (VTT) at Observatorio del Teide, Tenerife, Spain. The Kiepenheuer Adaptive Optics System (KAOS) at the VTT provides a field-of-view with a diameter of 270′′. Time series of datasets with 100 images were acquired with a large-format (7920 × 6004 pixels) CMOS imager at a frame rate of 30 Hz. An experimental optical setup that enabled wide-field imaging is briefly presented. Results from speckle-masking imaging and Multi-Frame Blind Deconvolution (MFBD) demonstrate the unique potential of the VTT for wide-field imaging. Power spectral analysis quantifies the instrument performance as a function of time and with distance from the lock point of the AO system. Further science capabilities are established using Local Correlation Tracking (LCT), Background-subtracted Solar Activity Maps (BaSAMs), and image quality/seeing metrics. In summary, commercial off-the-shelf camera systems can become an asset to sub-meter-class solar telescopes and open up new science opportunities at the interface between large-aperture and synoptic solar telescopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

No datasets were generated or analysed during the current study.

References

  • Beck, C., Rezaei, R., Fabbian, D.: 2011, Stray-light contamination and spatial deconvolution of slit-spectrograph observations. Astron. Astrophys. 535, A129. DOI.

    Article  ADS  Google Scholar 

  • Berkefeld, T., Soltau, D., Schmidt, D., von der Lühe, O.: 2010, Adaptive optics development at the German solar telescopes. Appl. Opt. 49, G155. DOI.

    Article  Google Scholar 

  • Cagigal, M.P., Canales, V.E.: 2000, Generalized fried parameter after adaptive optics partial wave-front compensation. J. Opt. Soc. Am. A 17, 903. DOI.

    Article  ADS  Google Scholar 

  • Cao, W., Gorceix, N., Coulter, R., Ahn, K., Rimmele, T.R., Goode, P.R.: 2010, Scientific instrumentation for the 1.6 m new solar telescope in Big Bear. Astron. Nachr. 331, 636. DOI.

    Article  ADS  Google Scholar 

  • Carlsson, M., De Pontieu, B., Hansteen, V.H.: 2019, New view of the solar chromosphere. Annu. Rev. Astron. Astrophys. 57, 189. DOI.

    Article  ADS  Google Scholar 

  • de Boer, C.R.: 1993, Speckle-Interferometrie und ihre Anwendung auf die Sonnenbeobachtung. PhD thesis, Georg-August Universität Göttingen, Germany.

  • de Boer, C.R., Kneer, F., Nesis, A.: 1992, Speckle observations of solar granulation. Astron. Astrophys. 257, L4.

    ADS  Google Scholar 

  • Deng, H., Zhang, D., Wang, T., Ji, K., Wang, F., Liu, Z., Xiang, Y., Jin, Z., Cao, W.: 2015, Objective image-quality assessment for high-resolution photospheric images by median filter-gradient similarity. Sol. Phys. 290, 1479. DOI.

    Article  ADS  Google Scholar 

  • Denker, C.: 2010, Instrument and data analysis challenges for imaging spectropolarimetry. Astron. Nachr. 331, 648. DOI.

    Article  ADS  Google Scholar 

  • Denker, C., Verma, M.: 2019, Background-subtracted solar activity maps. Sol. Phys. 294, 71. DOI.

    Article  ADS  Google Scholar 

  • Denker, C., Mascarinas, D., Xu, Y., Cao, W., Yang, G., Wang, H., Goode, P.R., Rimmele, T.: 2005, High-spatial-resolution imaging combining high-order adaptive optics, frame selection, and speckle masking reconstruction. Sol. Phys. 227, 217. DOI.

    Article  ADS  Google Scholar 

  • Denker, C., Deng, N., Rimmele, T.R., Tritschler, A., Verdoni, A.: 2007, Field-dependent adaptive optics correction derived with the spectral ratio technique. Sol. Phys. 241, 411. DOI.

    Article  ADS  Google Scholar 

  • Denker, C., Dineva, E., Balthasar, H., et al.: 2018b, Image quality in high-resolution and high-cadence solar images. Sol. Phys. 5, 236. DOI.

    Article  Google Scholar 

  • Denker, C., Kuckein, C., Verma, M., et al.: 2018a, Data analysis and management for high-resolution solar physics – image restoration and imaging spectroscopy at the GREGOR solar telescope. Astrophys. J. Suppl. Ser. 236, 5. DOI.

    Article  ADS  Google Scholar 

  • Doerr, H.-P., Steinmetz, T., Holzwarth, R., Kentischer, T., Schmidt, W.: 2012, A laser frequency comb system for absolute calibration of the VTT echelle spectrograph. Sol. Phys. 280, 663. DOI.

    Article  ADS  Google Scholar 

  • Fried, D.L.: 1966, Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J. Opt. Soc. Am. A 56, 1372. DOI.

    Article  ADS  Google Scholar 

  • Fried, D.L., Mevers, G.E.: 1974, Evaluation of \(r_{0}\) for propagation down through the atmosphere. Appl. Opt. 13, 2620. DOI.

    Article  ADS  Google Scholar 

  • Hagenaar, H.J., Shine, R.A.: 2005, Moving magnetic features around sunspots. Astrophys. J. 635, 659. DOI.

    Article  ADS  Google Scholar 

  • Helmli, F.S., Scherer, S.: 2001, Adaptive shape from focus with an error estimation in light microscopy. In: Lončarić, S., Babić, H. (eds.) Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis. In Conjunction with 23rd International Conference on Information Technology Interfaces, IEEE Cat. No. 01EX480, 188. DOI.

    Chapter  Google Scholar 

  • Kamlah, R., Verma, M., Diercke, A., Denker, C.: 2021, Wavelength dependence of image quality metrics and seeing parameters and their relation to adaptive optics performance. Sol. Phys. 296, 29. DOI.

    Article  ADS  Google Scholar 

  • Korff, D.: 1973, Analysis of a method for obtaining near-diffraction-limited information in the presence of atmospheric turbulence. J. Opt. Soc. Am. A 63, 971.

    Article  ADS  Google Scholar 

  • Kuckein, C., Denker, C., Verma, M., et al.: 2017, sTools – a data reduction pipeline for the GREGOR Fabry-Pérot interferometer and the high-resolution fast imager at the GREGOR solar telescope. In: Vargas Domínguez, S., Kosovichev, A.G., Antolin, P., Harra, L. (eds.) Fine Structure and Dynamics of the Solar Atmosphere 327, 20. DOI.

    Chapter  Google Scholar 

  • LaVision: 2021a, Product Manual for DaVis 10.2 Software. LaVision GmbH, Göttingen, Germany.

  • LaVision: 2021b, Product Manual for Imager MX CXP. LaVision GmbH, Göttingen, Germany.

  • Löfdahl, M.G.: 2002, Multi-frame blind deconvolution with linear equality constraints. In: Bones, P.J., Fiddy, M.A., Millane, R.P. (eds.) Image Reconstruction from Incomplete Data, Proc. SPIE 4792, 146. DOI.

    Chapter  Google Scholar 

  • Löfdahl, M.G., Hillberg, T., de la Cruz Rodríguez, J., Vissers, G., Andriienko, O., Scharmer, G.B., Haugan, S.V.H., Fredvik, T.: 2021, SSTRED: data- and metadata-processing pipeline for CHROMIS and CRISP. Astron. Astrophys. 653, A68. DOI.

    Article  Google Scholar 

  • Löhner-Böttcher, J., Schmidt, W., Doerr, H.-P., Kentischer, T., Steinmetz, T., Probst, R.A., Holzwarth, R.: 2017, LARS: an absolute reference spectrograph for solar observations. Upgrade from a prototype to a turn-key system. Astron. Astrophys. 607, A12. DOI.

    Article  Google Scholar 

  • Lomb, N.R.: 1976, Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447. DOI.

    Article  ADS  Google Scholar 

  • Mikurda, K., von der Lühe, O.: 2006, High resolution solar speckle imaging with the extended knox-Thompson algorithm. Sol. Phys. 235, 31. DOI.

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Sol. Phys. 275, 3. DOI.

    Article  ADS  Google Scholar 

  • Popowicz, A., Radlak, K., Bernacki, K., Orlov, V.: 2017, Review of image quality measures for solar imaging. Sol. Phys. 292, 187. DOI.

    Article  ADS  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: 1992, Numerical Recipes in C. The Art of Scientific Computing, Cambridge University Press, New York.

    Google Scholar 

  • Pruthvi, H., Roth, M.: 2023, The new HELLRIDE at the vacuum tower telescope. Sol. Phys. 298, 41. DOI.

    Article  ADS  Google Scholar 

  • Puschmann, K.G., Beck, C.: 2011, Application of speckle and (multi-object) multi-frame blind deconvolution techniques on imaging and imaging spectropolarimetric data. Astron. Astrophys. 533, A21. DOI.

    Article  ADS  Google Scholar 

  • Puschmann, K.G., Sailer, M.: 2006, Speckle reconstruction of photometric data observed with adaptive optics. Astron. Astrophys. 454, 1011. DOI.

    Article  ADS  Google Scholar 

  • Quintero Noda, C., Schlichenmaier, R., Bellot Rubio, L.R., Löfdahl, M.G., Khomenko, E., Jurčák, J., et al.: 2022, The European solar telescope. Astron. Astrophys. 666, A21. DOI.

    Article  Google Scholar 

  • Rimmele, T.R., Warner, M., Keil, S.L., Goode, P.R., Knölker, M., et al.: 2020, The Daniel K. Inouye Solar Telescope – observatory overview. Sol. Phys. 295, 172. DOI.

    Article  ADS  Google Scholar 

  • Sánchez Almeida, J., Asensio Ramos, A., Trujillo Bueno, J., Cernicharo, J.: 2001, G-band spectral synthesis in solar magnetic concentrations. Astrophys. J. 555, 978.

    Article  ADS  Google Scholar 

  • Scargle, J.D.: 1982, Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835. DOI.

    Article  ADS  Google Scholar 

  • Scharmer, G.B., Bjelksjo, K., Korhonen, T.K., Lindberg, B., Petterson, B.: 2003, The 1-meter Swedish solar telescope. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 4853, 341. DOI.

    Chapter  Google Scholar 

  • Schmidt, W., von der Lühe, O., Volkmer, R., Denker, C., Solanki, S.K., Balthasar, H., et al.: 2012, The 1.5 meter solar telescope GREGOR. Astron. Nachr. 333, 796. DOI.

    Article  ADS  Google Scholar 

  • Schrijver, C.J., Hagenaar, H.J., Title, A.M.: 1997, On the patterns of the solar granulation and supergranulation. Astrophys. J. 475, 328. DOI.

    Article  ADS  Google Scholar 

  • Schröter, E.H., Soltau, D., Wiehr, E.: 1985, The German solar telescopes at the Observatorio del Teide. Vistas Astron. 28, 519. DOI.

    Article  ADS  Google Scholar 

  • Schüssler, M., Shelyag, S., Berdyugina, S., Vögler, A., Solanki, S.K.: 2003, Why solar magnetic flux concentrations are bright in molecular bands. Astrophys. J. Lett. 597, L173.

    Article  ADS  Google Scholar 

  • So, C.W., Yuen, E.L.H., Leung, E.H.F., Pun, J.C.S.: 2024, Solar image quality assessment: a proof of concept using variance of Laplacian method and its application to optical atmospheric condition monitoring. Publ. Astron. Soc. Pac. 136, 044504. DOI.

    Article  ADS  Google Scholar 

  • Sobotka, M., Brandt, P.N., Simon, G.W.: 1999, Fine structure in sunspots. III. Penumbral grains. Astron. Astrophys. 348, 621.

    ADS  Google Scholar 

  • Soltau, D., Acton, D.S., Kentischer, T., Roser, M., Schmidt, W., Stix, M., von der Luhe, O.: 1997, Adaptive optics at the German VTT on Tenerife. In: Schmieder, B., del Toro Iniesta, J.C., Vazquez, M. (eds.) 1st Advances in Solar Physics Euroconference. Advances in Physics of Sunspots, Astron. Soc. Pac. Conf. Ser. 118, 351.

    Google Scholar 

  • Srivastava, A.K., Kuridze, D., Zaqarashvili, T.V., Dwivedi, B.N.: 2008, Intensity oscillations observed with hinode near the South Pole of the Sun: leakage of low frequency magneto-acoustic waves into the solar corona. Astron. Astrophys. 481, L95. DOI.

    Article  ADS  Google Scholar 

  • Steiner, O., Hauschildt, P.H., Bruls, J.: 2001, Radiative properties of magnetic elements. I. Why are G-band bright points bright? Astron. Astrophys. 372, L13.

    Article  ADS  Google Scholar 

  • Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L.D., Owens, J.K.: 2008, The solar optical telescope for the hinode mission: an overview. Sol. Phys. 249, 167. DOI.

    Article  ADS  Google Scholar 

  • Uitenbroek, H., Tritschler, A.: 2006, The contrast of magnetic elements in synthetic CH- and CN-band images of solar magnetoconvection. Astrophys. J. 639, 525.

    Article  ADS  Google Scholar 

  • van Noort, M., Rouppe van der Voort, L., Löfdahl, M.G.: 2005, Solar image restoration by use of multi-frame blind de-convolution with multiple objects and phase diversity. Sol. Phys. 228, 191. DOI.

    Article  ADS  Google Scholar 

  • Verma, M., Denker, C.: 2011, Horizontal flow fields observed in hinode G-band images. I. Methods. Astron. Astrophys. 529, A153.

    Article  ADS  Google Scholar 

  • Verma, M., Kummerow, P., Denker, C.: 2018, On the extent of the moat flow in axisymmetric sunspots. Astron. Nachr. 339, 268. DOI.

    Article  ADS  Google Scholar 

  • Verma, M., Balthasar, H., Deng, N., Liu, C., Shimizu, T., Wang, H., Denker, C.: 2012, Horizontal flow fields observed in hinode G-band images. II. Flow fields in the final stages of sunspot decay. Astron. Astrophys. 538, A109. DOI.

    Article  ADS  Google Scholar 

  • von der Lühe, O.: 1984, Estimating Fried’s parameter from a time series of an arbitrary resolved object imaged through atmospheric turbulence. J. Opt. Soc. Am. A 1, 510. DOI.

    Article  ADS  Google Scholar 

  • von der Lühe, O.: 1998, High-resolution observations with the German vacuum tower telescope on Tenerife. New Astron. Rev. 42, 493. DOI.

    Article  ADS  Google Scholar 

  • von der Lühe, O., Soltau, D., Berkefeld, T., Schelenz, T.: 2003, KAOS: adaptive optics system for the vacuum tower telescope at Teide Observatory. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 4853, 187. DOI.

    Chapter  Google Scholar 

  • Wilken, V., de Boer, C.R., Denker, C., Kneer, F.: 1997, Speckle measurements of the centre-to-limb variation of the solar granulation. Astron. Astrophys. 325, 819.

    ADS  Google Scholar 

  • Wöger, F., von der Lühe, O.: 2007, Field dependent amplitude calibration of adaptive optics supported solar speckle imaging. Appl. Opt. 46, 8015. DOI.

    Article  ADS  Google Scholar 

  • Wöger, F., von der Lühe, O.: 2008, KISIP: a software package for speckle interferometry of adaptive optics corrected solar data. In: Bridger, A., Radziwill, N.M. (eds.) Advanced Software and Control for Astronomy II, Proc. SPIE 7019, 70191E. DOI.

    Chapter  Google Scholar 

  • Wöger, F., von der Lühe, O., Reardon, K.: 2008, Speckle interferometry with adaptive optics corrected solar data. Astron. Astrophys. 488, 375. DOI.

    Article  ADS  Google Scholar 

  • Wöger, F., Rimmele, T., Ferayorni, A., Beard, A., Gregory, B.S., Sekulic, P., Hegwer, S.L.: 2021, The Daniel K. Inouye Solar Telescope (DKIST)/Visible Broadband Imager (VBI). Sol. Phys. 296, 145. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The Vacuum Tower Telescope (VTT) at the Spanish Observatorio del Teide of the Instituto de Astrofísica de Canarias is operated by the German consortium of the Institut für Sonnenphysik (KIS) in Freiburg, the Leibniz-Institut für Astrophysik Potsdam (AIP), and the Max-Planck-Institut für Sonnensystemforschung (MPS) in Göttingen. This research has made use of NASA’s Astrophysics Data System (ADS). DeepL Write was used in copy editing (spelling, grammar, and readability) of the manuscript. We would like to thank the referee for very valuable and substantial comments, which helped to significantly to improve the manuscript.

Funding

This study was supported by grants KO 6283/2-1 and VE 1112/1-1 of the Deutsche Forschungsgemeinschaft (DFG). AP received funding from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No. 833251 PROMINENT ERC-ADG 2018).

Author information

Authors and Affiliations

Authors

Contributions

The individual contributions by the authors are listed according to the Contributor Roles Taxonomy (credit.niso.org). Robert Kamlah: formal analysis, investigation, software, validation, visualization, and writing – original draft; Meetu Verma: formal analysis, investigation, project administration, software, supervision, validation, visualization, and writing – review & editing; Carsten Denker: conceptualization, data curation, formal analysis, investigation, project administration, software, supervision, validation, visualization, and writing – review & editing; Ioannis Kontogiannis: investigation and writing – review & editing; Alexander G. M. Pietrow: investigation and writing – review & editing; Jürgen Rendtel: investigation and writing – review & editing; Emily Lößnitz: investigation and writing – review & editing; Arooj Faryad: investigation and writing – review & editing; Reiner Volkmer: project administration – review & editing; Rolf Schlichenmaier: project administration – review & editing; Thomas Berkefeld: resources – review & editing; Miguel Esteves: resources – review & editing; Olivier Grassin: resources – review & editing; Markus Roth: project administration – review & editing

Corresponding author

Correspondence to Robert Kamlah.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamlah, R., Verma, M., Denker, C. et al. Wide-Field Image Restoration of G-Band and Ca ii K Images Containing Large and Complex Active Regions. Sol Phys 300, 62 (2025). https://doi.org/10.1007/s11207-025-02472-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-025-02472-6

Keywords

Profiles

  1. Alexander G. M. Pietrow