Skip to main content
Log in

Properties of Type-II Radio Bursts in Relation to Magnetic Complexity of the Solar Active Regions

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Type-II radio bursts are believed to occur as a result of the shock driven by flares or coronal mass ejections (CMEs). While the shock waves are important for the acceleration of electrons necessary for the generation of the radio emission, the exact nature of the shock and coronal conditions necessary to produce type-II radio emission is still under debate. In this investigation, we probe the relationship of kinematic characteristics of the type-II radio bursts with the magnetic-field complexity (Mj) of the active regions visible on the photosphere. Our investigation of 64 type-II solar radio bursts, which are associated with flares and CMEs, reveals that Mj is linearly correlated in the logarithmic scale with the starting frequency (fs) and drift-rate (\({\Delta f/\Delta t}\)) of type-II radio burst. Further, Mj exhibits a linear correlation with the shock height (r) and electron density (\(n_{\rm e}\)) in logarithmic scale. This indicates that high frequency (fs \(\geq 100\) \({\rm MH_{z}}\)) bursts, which occur at the reconnection site near the solar surface, are produced from a strong magnetically complex region. Further, strong and complex magnetic-field regions produce shocks of higher speeds. Based on the derived plasma parameters of the radio bursts and their relationship with fs as well as with Mj, we propose that the high-frequency type-II bursts were generated in a special situation when the shock is produced due to magnetic reconnection occurring in the low-lying coronal loops. We conclude that type-II radio bursts can occur even in the inner corona as well as in the outer corona; however, it depends on the magnetic complexity of the active region in which the event occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  • Aguilar-Rodriguez, E., Gopalswamy, N., MacDowall, R., Yashiro, S., Kaiser, M.: 2005, A study of the drift rate of type ii radio bursts at different wavelengths. In: Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere 592, 393.

    Google Scholar 

  • Aurass, H., Vourlidas, A., Andrews, M.D., Thompson, B.J., Howard, R.H., Mann, G.: 1999, Nonthermal radio signatures of coronal disturbances with and without coronal mass ejections. Astrophys. J. 511, 451. DOI.

    Article  ADS  Google Scholar 

  • Awasthi, A.K., Liu, R., Wang, Y.: 2019, Double-decker filament configuration revealed by mass motions. Astrophys. J. 872, 109. DOI. ADS.

    Article  ADS  Google Scholar 

  • Awasthi, A.K., Jain, R., Gadhiya, P.D., Aschwanden, M.J., Uddin, W., Srivastava, A.K., Chandra, R., Gopalswamy, N., Nitta, N.V., Yashiro, S., Manoharan, P.K., Choudhary, D.P., Joshi, N.C., Dwivedi, V.C., Mahalakshmi, K.: 2013, Multiwavelength diagnostics of the precursor and main phases of an M1.8 flare on 2011 April 22. Mon. Not. Roy. Astron. Soc. 437, 2249. DOI.

    Article  ADS  Google Scholar 

  • Awasthi, A.K., Liu, R., Wang, H., Wang, Y., Shen, C.: 2018, Pre-eruptive magnetic reconnection within a multi-flux-rope system in the solar corona. Astrophys. J. 857, 124. DOI. ADS.

    Article  ADS  Google Scholar 

  • Awasthi, A.K., Mrozek, T., Kołomański, S., Litwicka, M., Stęślicki, M., Kułaga, K.: 2024, Relative yield of thermal and nonthermal emission during weak flares observed by STIX during 2021 September 20– 25. Astrophys. J. 964, 142. DOI. ADS.

    Article  Google Scholar 

  • Bray, R.J., Loughhead, R.E.: 1964 Sunspots

  • Cairns, I.H., Knock, S., Robinson, P., Kuncic, Z.: 2003, Type II solar radio bursts: theory and space weather implications. In: Advances in Space Environment Research: Volume I, 27.

  • Cairns, I.H., Kozarev, K.A., Nitta, N.V., Agueda, N., Battarbee, M., Carley, E.P., Dresing, N., Gómez-Herrero, R., Klein, K.-L., Lario, D., Pomoell, J., Salas-Matamoros, C., Veronig, A.M., Li, B., McCauley, P.: 2020, Comprehensive characterization of solar eruptions with remote and in-situ observations, and modeling: the major solar events on 4 November 2015. Solar Phys. 295, 32. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cane, H.V., Erickson, W.C.: 2005, Solar type II radio bursts and IP type II events. Astrophys. J. 623, 1180. DOI.

    Article  ADS  Google Scholar 

  • Chernov, G., Fomichev, V.: 2021, Solar type II radio bursts and IP type II events. Astrophys. J. 922, 82. DOI.

    Article  ADS  Google Scholar 

  • Cho, K.-S., Gopalswamy, N., Kwon, R.-Y., Kim, R.-S., Yashiro, S.: 2013, A high-frequency type II solar radio burst associated with the 2011 February 13 coronal mass ejection. Astrophys. J. 765, 148.

    Article  ADS  Google Scholar 

  • Choithani, V., Jain, R., Awasthi, A.K., Singh, G., Chaudhari, S., Sharma, S.K.: 2018, Study of temporal and spectral characteristics of the X-ray emission from solar flar. Res. Astron. Astrophys. 18, 121. DOI.

    Article  ADS  Google Scholar 

  • Claßen, H.-T., Aurass, H.: 2002, On the association between type II radio bursts and CMEs. Astron. Astrophys. 384, 1098.

    Article  ADS  Google Scholar 

  • Cortie, A.: 1901, On the types of sun-spot disturbances. Astrophys. J. 13, 260.

    Article  ADS  Google Scholar 

  • Edwards, L.T., Bunting, K.A., Ramsey, B., Gunn, M., Fearn, T., Knight, T., Muro, G.D., Morgan, H.: 2023, Derived electron densities from linear polarization observations of the visible-light corona during the 14 December 2020 total solar eclipse. ArXiv preprint. arXiv.

  • Fleishman, G.D., Gary, D.E., Chen, B. Kuroda, N., Yu, S., Nita, G.M.: 2020, Decay of the coronal magnetic field can release sufficient energy to power a solar flare. Science 367, 278. DOI.

    Article  ADS  MathSciNet  Google Scholar 

  • Fletcher, L., Dennis, B.R., Hudson, H.S., Krucker, S., Phillips, K., Veronig, A., Battaglia, M., Bone, L., Caspi, A., Chen, Q., Gallagher, P., Grigis, P.T., Ji, H., Liu, W., Milligan, R.O., Temmer, M.: 2011, An observational overview of solar flares. Space Sci. Rev. 159, 19. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fludra, A., Del Zanna, G., Alexander, D., Bromage, B.: 1999, Electron density and temperature of the lower solar corona. J. Geophys. Res. 104, 9709.

    Article  ADS  Google Scholar 

  • Giovanelli, R.G.: 1939, The relations between eruptions and sunspots. Astrophys. J. 89, 555.

    Article  ADS  Google Scholar 

  • Gómez, J.R., Vieira, L., Dal Lago, A., Palacios, J.: 2018, Coronal electron density temperature and solar spectral irradiance during solar cycles 23 and 24. Astrophys. J. 852, 137.

    Article  ADS  Google Scholar 

  • Gopalswamy, N.: 2006, Coronal mass ejections and type II radio bursts. Geophys. Monogr.-Am. Geophys. Union 165, 207.

    ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Krucker, S., Stenborg, G., Howard, R.A.: 2004, Intensity variation of large solar energetic particle events associated with coronal mass ejections. J. Geophys. Res. 109, 1.

    Google Scholar 

  • Gopalswamy, N., Aguilar-Rodriguez, E., Yashiro, S., Nunes, S., Kaiser, M., Howard, R.: 2005, Type II radio bursts and energetic solar eruptions. J. Geophys. Res. 110, 1.

    Google Scholar 

  • Gopalswamy, N., Xie, H., Mäkelä, P., Yashiro, S., Akiyama, S., Uddin, W., Srivastava, A.K., Joshi, N.C., Chandra, R., Manoharan, P.K., Mahalakshmi, K., Dwivedi, V.C., Jain, R., Awasthi, A.K., Nitta, N.V., Aschwanden, M.J., Choudhary, D.P.: 2013, Height of shock formation in the solar corona inferred from observations of type II radio bursts and coronal mass ejections. Adv. Space Res. 51, 1981. DOI.

    Article  ADS  Google Scholar 

  • Gou, T., Liu, R., Veronig, A.M., Zhuang, B., Li, T., Wang, W., Xu, M., Wang, Y.: 2023, Complete replacement of magnetic flux in a flux rope during a coronal mass ejection. Nat. Astron. DOI. ADS.

    Article  Google Scholar 

  • Hale, G.E., Nicholson, S.B.: 1938, Magnetic observations of sunspots, 1917 – 1924... Washington.

  • Hale, G.E., Ellerman, F., Nicholson, S.B., Joy, A.H.: 1919, The magnetic polarity of sun-spots. Astrophys. J. 49, 153.

    Article  ADS  Google Scholar 

  • Jain, R.: 1983, High resolution optical observations for monitoring solar activity and their correlation with solar radio observations and other solar terrestrial relations. Phd thesis, Gujarat University, Gujarat, IN.

  • Jain, R.: 1986, A new approach for predicting proton events. Mon. Not. Roy. Astron. Soc. 223, 877.

    Article  ADS  Google Scholar 

  • Jain, R., Dave, H., Shah, A.B., Vadher, N.M., Shah, V.M., Ubale, K.S.B.G.P., Manian, S.C.M., Shah, K.J., Kumar, S., Kayasth, S.L., Patel, V.D., Trivedi, J.J., Deshpande, M.R.: 2005, Solar X-ray spectrometer (soxs) mission on board GSAT2 Indian spacecraft: the low-energy payload. Solar Phys. 227, 89. DOI.

    Article  ADS  Google Scholar 

  • Jain, R., Pradhan, A.K., Joshi, V., Shah, K.J., Trivedi, J.J., Kayasth, S.L., Shah, V.M., Deshpande, M.R.: 2006, The fe-line feature in the X-ray spectrum of solar flares: first results from the SOXS mission. Solar Phys. 239, 217. DOI.

    Article  ADS  Google Scholar 

  • Jain, R., Awasthi, A.K., Chandel, B., Bharti, L., Hanaoka, Y., Kiplinger, A.L.: 2011, Probing the role of magnetic-field variations in NOAA AR 8038 in producing a solar flare and CME on 12 may 1997. Solar Phys. 271, 57.

    Article  ADS  Google Scholar 

  • Jain, R., Awasthi, A.K., Tripathi, S.C., Bhatt, N., Khan, P.A.: 2012, Influence of solar flare X-rays on the habitability on the Mars. Icarus 220, 889. DOI.

    Article  ADS  Google Scholar 

  • Knock, S., Cairns, I.H., Robinson, P., Kuncic, Z.: 2001, Theory of type II radio emission from the foreshock of an interplanetary shock. J. Geophys. Res. 106, 25041.

    Article  ADS  Google Scholar 

  • Kouloumvakos, A., Rouillard, A., Warmuth, A., Magdalenic, J., Jebaraj, I.C., Mann, G., Vainio, R., Monstein, C.: 2021, Coronal conditions for the occurrence of type II radio bursts. Astrophys. J. 913, 99.

    Article  ADS  Google Scholar 

  • Kumari, A., Morosan, D.E., Kilpua, E.K.J.: 2021, On the occurrence of type IV solar radio bursts in solar cycle 24 and their association with coronal mass ejections. Astrophys. J. 906, 79. DOI.

    Article  ADS  Google Scholar 

  • Kundu, M.R.: 1965, Solar Radio Astronomy, Interscience Publication, New York.

    Google Scholar 

  • Künzel, H.: 1959, Die Flare-Häufigkeit in Fleckengruppen unterschiedlicher Klasse und magnetischer Struktur (Mitteilungen des Astrophysikalischen Observatoriums Potsdam Nr. 87). Astron. Nachr. 285, 271.

    Article  ADS  Google Scholar 

  • Magdalenić, J., Marqué, C., Zhukov, A., Vršnak, B., Žic, T.: 2010, Origin of coronal shock waves associated with slow coronal mass ejections. Astrophys. J. 718, 266.

    Article  ADS  Google Scholar 

  • Mann, G., Classen, H.-T.: 1995, Electron acceleration to high energies at quasi-parallel shock waves in the solar corona. Astron. Astrophys. 304, 576.

    ADS  Google Scholar 

  • Mann, G., Klassen, A.: 2005, Electron beams generated by shock waves in the solar corona. Astron. Astrophys. 441, 319.

    Article  ADS  Google Scholar 

  • Mann, G., Melnik, V., Rucker, H., Konovalenko, A., Brazhenko, A.: 2018, Radio signatures of shock-accelerated electron beams in the solar corona. Astron. Astrophys. 609, A41.

    Article  ADS  Google Scholar 

  • McIntosh, P.S.: 1990, The classification of sunspot groups. Solar Phys. 125, 251.

    Article  ADS  Google Scholar 

  • Mercier, C., Chambe, G.: 2015, Electron density and temperature in the solar corona from multifrequency radio imaging. Astron. Astrophys. 583, A101.

    Article  ADS  Google Scholar 

  • Mithun, N.P.S., Vadawale, S.V., Zanna, G.D., Rao, Y.K., Joshi, B., Sarkar, A., Mondal, B., Janardhan, P., Bhardwaj, A., Mason, H.E.: 2022, Soft X-ray spectral diagnostics of multithermal plasma in solar flares with chandrayaan-2 XSM. Astrophys. J. 939, 112. DOI.

    Article  ADS  Google Scholar 

  • Newkirk, G. Jr: 1961, The solar corona in active regions and the thermal origin of the slowly varying component of solar radio radiation. Astrophys. J. 133, 983.

    Article  ADS  Google Scholar 

  • Nindos, A.: 2020, Incoherent Solar Radio Emission. Front. Astron. Space Sci. 7. DOI.

  • Nindos, A., Aurass, H., Klein, K.-L., Trottet, G.: 2008, Radio emission of flares and coronal mass ejections. Solar Phys. 253, 3. DOI.

    Article  ADS  Google Scholar 

  • Nindos, A., Alissandrakis, C., Hillaris, A., Preka-Papadema, P.: 2011, On the relationship of shock waves to flares and coronal mass ejections. Astron. Astrophys. 531, A31.

    Article  ADS  Google Scholar 

  • Pohjolainen, S., Hori, K., Sakurai, T.: 2008, Radio bursts associated with flare and ejecta in the 13. Solar Phys. 253, 291.

    Article  ADS  Google Scholar 

  • Prakash, O., Umapathy, S., Shanmugaraju, A., Vršnak, B.: 2009, Type II bursts in meter and decameter–hectometer wavelength ranges and their relation to flares and CMEs. Solar Phys. 258, 105.

    Article  ADS  Google Scholar 

  • Reid, H.A.S., Ratcliffe, H.: 2014, A review of solar type III radio bursts. Res. Astron. Astrophys. 14, 773. DOI.

    Article  ADS  Google Scholar 

  • Robinson, R., Stewart, R., Cane, H.: 1984, Properties of metre-wavelength solar bursts associated with interplanetary type II emission. Solar Phys. 91, 159.

    Article  ADS  Google Scholar 

  • Saito, K., Makita, M., Nishi, K., Hata, S.: 1970, A non-spherical axisymmetric model of the solar K corona of the minimum type. Ann. Tokyo Astron. Obs. 12, 51.

    ADS  Google Scholar 

  • Sammis, I., Tang, F., Zirin, H.: 2000, The dependence of large flare occurrence on the magnetic structure of sunspots. Astrophys. J. 540, 583.

    Article  ADS  Google Scholar 

  • Schmidt, J., Cairns, I.H.: 2012, Type II radio bursts: 1. New entirely analytic formalism for the electron beams, Langmuir waves, and radio emission. J. Geophys. Res. 117.

  • Schmieder, B.: 2006, Magnetic source regions of coronal mass ejections. Astron. Astrophys. 27, 139. DOI.

    Article  Google Scholar 

  • Umuhire, A., Gopalswamy, N., Uwamahoro, J., Akiyama, S., Yashiro, S., Mäkelä, P.: 2021, Properties of high-frequency type II radio bursts and their relation to the associated coronal mass ejections. Solar Phys. 296, 1.

    Article  Google Scholar 

  • Vourlidas, A., Carley, E., Vilmer, N.: 2020, Radio observations of coronal mass ejections: space weather aspects. Front. Astron. Space Sci. 7, 43. DOI.

    Article  ADS  Google Scholar 

  • Vršnak, B., Lulić, S.: 2000, Formation of coronal MHD shock waves–I. The basic mechanism. Solar Phys. 196, 157.

    Article  ADS  Google Scholar 

  • Vršnak, B., Magdalenić, J., Zlobec, P.: 2004, Band-splitting of coronal and interplanetary type II bursts-III. Physical conditions in the upper corona and interplanetary space. Astron. Astrophys. 413, 753.

    Article  ADS  Google Scholar 

  • Vršnak, B., Ruždjak, V., Zlobec, P., Aurass, H.: 1995, Ignition of MHD shocks associated with solar flares. Solar Phys. 158, 331.

    Article  ADS  Google Scholar 

  • Vršnak, B., Aurass, H., Magdalenić, J., Gopalswamy, N.: 2001, Band-splitting of coronal and interplanetary type II bursts-I. Basic properties. Astron. Astrophys. 377, 321.

    Article  ADS  Google Scholar 

  • Waldmeier, M.: 1947, Coronal radiation and ionospheric variations during the solar eclipse, July 9, 1945. Terr. Magn. Atmos. Electr. 52, 333.

    Article  Google Scholar 

  • White, S.M.: 2007, Solar radio bursts and space weather. Asian J. Phys. 16, 189.

    Google Scholar 

  • Wild, J., Murray, J., Rowe, W.: 1954, Harmonics in the spectra of solar radio disturbances. Aust. J. Phys. 7, 439. DOI.

    Article  ADS  Google Scholar 

  • Wild, J.P., Smerd, S.F., Weiss, A.A.: 1963, Solar bursts. Annu. Rev. Astron. Astrophys. 1, 291. DOI.

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Mäkelä, P., Akiyama, S., Uddin, W., Srivastava, A., Joshi, N., Chandra, R., Manoharan, P., Mahalakshmi, K., et al.: 2014, Homologous flare–CME events and their metric type II radio burst association. Adv. Space Res. 54, 1941.

    Article  ADS  Google Scholar 

  • Zheleznyakov, V.V.: 1964, On the equation of radiative transfer in a magnetoactive plasma. Astrophys. J. 155, 1129. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the online data facilities of Solar Monitor, SOHO-LASCO catalog, interactive Mekelle website, SGD reports, JSOC data service, and the DS9 software developers. The authors are also thankful to the reviewer, Dr. G.P. Chernov and the editor-in-chief, Dr. Iñigo Arregui for their support.

Funding

A.K.A. has received funding from the European Union’s Horizon 2020 research and innovation program under the Maria Sklodowska-Curie grant agreement No. 847639.

Author information

Authors and Affiliations

Authors

Contributions

T.N.B. and R.J. analyzed the data and wrote the first draft. All the authors contributed to writing the manuscript and discussion.

Corresponding author

Correspondence to Rajmal Jain.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, T.N., Jain, R., Gopalswamy, N. et al. Properties of Type-II Radio Bursts in Relation to Magnetic Complexity of the Solar Active Regions. Sol Phys 299, 74 (2024). https://doi.org/10.1007/s11207-024-02318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-024-02318-7

Keywords

Navigation