Skip to main content
Log in

Chromospheric Evaporation by Particle Beams in Multi-Dimensional Flare Models

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Evaporation of chromospheric plasma by particle beams has been a standard feature of models of solar flares for many decades, supported both by observations of strong hard X-ray bremsstrahlung signals, and detailed 1D hydrodynamic radiative transfer models with near-relativistic electron beams included. However, in multi-dimensional models, evaporation, if included, has only been driven by heat conduction and by the impact and reflection of fast plasma outflows on the lower atmosphere. Here we present the first multi-dimensional flare simulation featuring evaporation driven by energetic electrons. We use a recent magnetohydrodynamic model that includes beam physics, but decrease the initial anomalous resistivity to create a gentler precursor phase, and improve on the dynamic resistivity treatment that determines where beams are injected. Beam-driven evaporation is achieved. The relevant factors are thermal conduction and electron beams, with the beam electrons more than doubling the kinetic energy flux, and adding 50% to the upward mass from the chromosphere. These findings finally pave the way for integrating detailed 1D flare modelling within a self-consistent 2D and 3D context. The beam fluxes from these self-consistent models can be used to directly compare multi-dimensional results with those from the externally injected beam fluxes of 1D models, as well as understand further evaporation-driven phenomena relating to beams of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Allred, J.C., Kowalski, A.F., Carlsson, M.: 2015, A unified computational model for solar and stellar flares. Astrophys. J. 809, 104. DOI. ADS.

    Article  ADS  Google Scholar 

  • Allred, J.C., Hawley, S.L., Abbett, W.P., Carlsson, M.: 2005, Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares. Astrophys. J. 630, 573. DOI. ADS.

    Article  ADS  Google Scholar 

  • Allred, J.C., Alaoui, M., Kowalski, A.F., Kerr, G.S.: 2020, Modeling the transport of nonthermal particles in flares using Fokker–Planck kinetic theory. Astrophys. J. 902, 16. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Boerner, P.: 2011, Solar corona loop studies with the atmospheric imaging assembly. I. Cross-sectional temperature structure. Astrophys. J. 732, 81. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bakke, H., Frogner, L., Gudiksen, B.V.: 2018, Non-thermal electrons from solar nanoflares. In a 3D radiative MHD simulation. Astron. Astrophys. 620, L5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Canfield, R.C., Gayley, K.G.: 1987, Impulsive H alpha diagnostics of electron-beam-heated solar flare model chromospheres. Astrophys. J. 322, 999. DOI. ADS.

    Article  ADS  Google Scholar 

  • Carlsson, M., Fletcher, L., Allred, J., Heinzel, P., Kašparová, J., Kowalski, A., Mathioudakis, M., Reid, A., Simões, P.J.A.: 2023, The F-CHROMA grid of 1D RADYN flare models. Astron. Astrophys. 673, A150. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cheung, M.C.M., Rempel, M., Chintzoglou, G., Chen, F., Testa, P., Martínez-Sykora, J., Sainz Dalda, A., DeRosa, M.L., Malanushenko, A., Hansteen, V., De Pontieu, B., Carlsson, M., Gudiksen, B., McIntosh, S.W.: 2019, A comprehensive three-dimensional radiative magnetohydrodynamic simulation of a solar flare. Nat. Astron. 3, 160. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chifor, C., Tripathi, D., Mason, H.E., Dennis, B.R.: 2007, X-ray precursors to flares and filament eruptions. Astron. Astrophys. 472, 967. DOI. ADS.

    Article  ADS  Google Scholar 

  • Czaykowska, A., De Pontieu, B., Alexander, D., Rank, G.: 1999, Evidence for chromospheric evaporation in the late gradual flare phase from SOHO/CDS observations. Astrophys. J. Lett. 521, L75. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Pontieu, B., Polito, V., Hansteen, V., Testa, P., Reeves, K.K., Antolin, P., Nóbrega-Siverio, D.E., Kowalski, A.F., Martinez-Sykora, J., Carlsson, M., McIntosh, S.W., Liu, W., Daw, A., Kankelborg, C.C.: 2021, A new view of the solar interface region from the Interface Region Imaging Spectrograph (IRIS). Solar Phys. 296, 84. DOI. ADS.

    Article  ADS  Google Scholar 

  • Druett, M., Ruan, W., Keppens, R.: 2023, Exploring self-consistent 2.5 D flare simulations with MPI-AMRVAC. arXiv e-prints. arXiv. DOI. ADS.

  • Druett, M.K., Zharkova, V.V.: 2018, HYDRO2GEN: non-thermal hydrogen Balmer and Paschen emission in solar flares generated by electron beams. Astron. Astrophys. 610, A68. DOI. ADS.

    Article  ADS  Google Scholar 

  • Druett, M.K., Zharkova, V.V.: 2019, Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams. Astron. Astrophys. 623, A20. DOI. ADS.

    Article  ADS  Google Scholar 

  • Druett, M.K., Pietrow, A.G.M., Vissers, G.J.M., Robustini, C., Calvo, F.: 2022, COCOPLOT: COlor COllapsed PLOTting software using colour to view 3D data as a 2D image. RAS Tech. Instrum. 1, 29. DOI. ADS.

    Article  ADS  Google Scholar 

  • Druett, M., Scullion, E., Zharkova, V., Matthews, S., Zharkov, S., Rouppe van der Voort, L.: 2017, Beam electrons as a source of H\(\alpha \) flare ribbons. Nat. Commun. 8, 15905. DOI. ADS.

    Article  ADS  Google Scholar 

  • Duijveman, A., Somov, B.V., Spektor, A.R.: 1983, Evolution of a flaring loop after injection of energetic electrons. Solar Phys. 88, 257. DOI. ADS.

    Article  ADS  Google Scholar 

  • Emslie, A.G.: 1978, The collisional interaction of a beam of charged particles with a hydrogen target of arbitrary ionization level. Astrophys. J. 224, 241. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fisher, G.H., Canfield, R.C., McClymont, A.N.: 1985, Flare loop radiative hydrodynamics. V – response to thick-target heating. VI – chromospheric evaporation due to heating by nonthermal electrons. VII – dynamics of the thick-target heated chromosphere. Astrophys. J. 289, 414. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fleishman, G.D., Nita, G.M., Chen, B., Yu, S., Gary, D.E.: 2022, Solar flare accelerates nearly all electrons in a large coronal volume. Nature 606, 674. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fletcher, L., Hudson, H.S.: 2008, Impulsive phase flare energy transport by large-scale Alfvén waves and the electron acceleration problem. Astrophys. J. 675, 1645. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fontenla, J.M., Avrett, E.H., Loeser, R.: 1993, Energy balance in the solar transition region. III. Helium emission in hydrostatic, constant-abundance models with diffusion. Astrophys. J. 406, 319. DOI. ADS.

    Article  ADS  Google Scholar 

  • Frogner, L., Gudiksen, B.V.: 2022, Implementing accelerated particle beams in a 3D simulation of the quiet Sun. arXiv e-prints. arXiv. DOI. ADS.

  • Frogner, L., Gudiksen, B.V., Bakke, H.: 2020, Accelerated particle beams in a 3D simulation of the quiet Sun. Astron. Astrophys. 643, A27. DOI. ADS.

    Article  ADS  Google Scholar 

  • Graham, D.R., Cauzzi, G.: 2015, Temporal evolution of multiple evaporating ribbon sources in a solar flare. Astrophys. J. Lett. 807, L22. DOI. ADS.

    Article  ADS  Google Scholar 

  • Graham, D.R., Cauzzi, G., Zangrilli, L., Kowalski, A., Simões, P., Allred, J.: 2020, Spectral signatures of chromospheric condensation in a major solar flare. Astrophys. J. 895, 6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gudiksen, B.V., Carlsson, M., Hansteen, V.H., Hayek, W., Leenaarts, J., Martínez-Sykora, J.: 2011, The stellar atmosphere simulation code Bifrost. Code description and validation. Astron. Astrophys. 531, A154. DOI. ADS.

    Article  ADS  Google Scholar 

  • Guo, L.-J., Huang, Y.-M., Bhattacharjee, A., Innes, D.E.: 2014, Rayleigh–Taylor type instabilities in the reconnection exhaust jet as a mechanism for supra-arcade downflows in the sun. Astrophys. J. Lett. 796, L29. DOI. ADS.

    Article  ADS  Google Scholar 

  • Heinzel, P.: 1995, Multilevel NLTE radiative transfer in isolated atmospheric structures: Implementation of the MALI-technique. Astron. Astrophys. 299, 563. ADS.

    ADS  Google Scholar 

  • Hudson, H.S., Simões, P.J.A., Fletcher, L., Hayes, L.A., Hannah, I.G.: 2021, Hot X-ray onsets of solar flares. Mon. Not. Roy. Astron. Soc. 501, 1273. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kašparová, J., Carlsson, M., Heinzel, P., Varady, M.: 2019, Modelling of flare processes: a comparison of the two RHD codes FLARIX and RADYN. In: Werner, K., Stehle, C., Rauch, T., Lanz, T. (eds.) Radiative Signatures from the Cosmos, Astronomical Society of the Pacific Conference Series 519, 141. ADS.

    Google Scholar 

  • Keppens, R., Meliani, Z., van Marle, A.J., Delmont, P., Vlasis, A., van der Holst, B.: 2012, Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics. J. Comput. Phys. 231, 718. DOI. ADS.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Keppens, R., Popescu Braileanu, B., Zhou, Y., Ruan, W., Xia, C., Guo, Y., Claes, N., Bacchini, F.: 2023, MPI-AMRVAC 3.0: updates to an open-source simulation framework. Astron. Astrophys. 673, A66. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kerr, G.S.: 2022, Interrogating solar flare loop models with IRIS observations 1: overview of the models, and mass flows. Front. Astron. Space Sci. 9, 1060856. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kerr, G.S.: 2023, Interrogating solar flare loop models with IRIS observations 2: plasma properties, energy transport, and future directions. Front. Astron. Space Sci. 9, 425. DOI. ADS.

    Article  Google Scholar 

  • Kong, X., Ye, J., Chen, B., Guo, F., Shen, C., Li, X., Yu, S., Chen, Y., Giacalone, J.: 2022a, A model of double coronal hard X-ray sources in solar flares. Astrophys. J. 933, 93. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kong, X., Chen, B., Guo, F., Shen, C., Li, X., Ye, J., Zhao, L., Jiang, Z., Yu, S., Chen, Y., Giacalone, J.: 2022b, Numerical modeling of energetic electron acceleration, transport, and emission in solar flares: connecting loop-top and footpoint hard X-ray sources. Astrophys. J. Lett. 941, L22. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kontogiannis, I.: 2023, The characteristics of flare- and CME-productive solar active regions. Adv. Space Res. 71, 2017. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kowalski, A.F.: 2023, Bridging high-density electron beam coronal transport and deep chromospheric heating in stellar flares. Astrophys. J. Lett. 943, L23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kowalski, A.F., Allred, J.C.: 2018, Parameterizations of chromospheric condensations in dG and dMe model flare atmospheres. Astrophys. J. 852, 61. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kowalski, A.F., Allred, J.C., Uitenbroek, H., Tremblay, P.-E., Brown, S., Carlsson, M., Osten, R.A., Wisniewski, J.P., Hawley, S.L.: 2017a, Hydrogen Balmer line broadening in solar and stellar flares. Astrophys. J. 837, 125. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kowalski, A.F., Allred, J.C., Daw, A., Cauzzi, G., Carlsson, M.: 2017b, The atmospheric response to high nonthermal electron beam fluxes in solar flares. I. Modeling the brightest NUV footpoints in the X1 solar flare of 2014 March 29. Astrophys. J. 836, 12. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kowalski, A.F., Wisniewski, J.P., Hawley, S.L., Osten, R.A., Brown, A., Fariña, C., Valenti, J.A., Brown, S., Xilouris, M., Schmidt, S.J., Johns-Krull, C.: 2019, The near-ultraviolet continuum radiation in the impulsive phase of HF/GF-type dMe flares. I. Data. Astrophys. J. 871, 167. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kowalski, A.F., Allred, J.C., Carlsson, M., Kerr, G.S., Tremblay, P.-E., Namekata, K., Kuridze, D., Uitenbroek, H.: 2022, The atmospheric response to high nonthermal electron-beam fluxes in solar flares. II. Hydrogen-broadening predictions for solar flare observations with the Daniel K. Inouye solar telescope. Astrophys. J. 928, 190. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., Mchedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., Ogawara, Y.: 1994, A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371, 495. DOI. ADS.

    Article  ADS  Google Scholar 

  • McLaughlin, J.A., Nakariakov, V.M., Dominique, M., Jelínek, P., Takasao, S.: 2018, Modelling quasi-periodic pulsations in solar and stellar flares. Space Sci. Rev. 214, 45. DOI. ADS.

    Article  ADS  Google Scholar 

  • McLaughlin, S.A., Milligan, R.O., Kerr, G.S., Monson, A.J., Simões, P.J.A., Mathioudakis, M.: 2023, Formation of the Lyman continuum during solar flares. Astrophys. J. 944, 186. DOI. ADS.

    Article  ADS  Google Scholar 

  • Milligan, R.O., Dennis, B.R.: 2009, Velocity characteristics of evaporated plasma using hinode/EUV imaging spectrometer. Astrophys. J. 699, 968. DOI. ADS.

    Article  ADS  Google Scholar 

  • Milligan, R.O., Gallagher, P.T., Mathioudakis, M., Bloomfield, D.S., Keenan, F.P., Schwartz, R.A.: 2006a, RHESSI and SOHO CDS observations of explosive chromospheric evaporation. Astrophys. J. Lett. 638, L117. DOI. ADS.

    Article  ADS  Google Scholar 

  • Milligan, R.O., Gallagher, P.T., Mathioudakis, M., Bloomfield, D.S., Keenan, F.P., Schwartz, R.A.: 2006b, RHESSI and SOHO CDS observations of explosive chromospheric evaporation. Astrophys. J. Lett. 638, L117. DOI. ADS.

    Article  ADS  Google Scholar 

  • Molnar, M.E., Reardon, K.P., Chai, Y., Gary, D., Uitenbroek, H., Cauzzi, G., Cranmer, S.R.: 2019, Solar chromospheric temperature diagnostics: a joint ALMA-H\(\alpha \) analysis. Astrophys. J. 881, 99. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nagai, F.: 1980, A model of hot loops associated with solar flares – part one – gasdynamics in the loops. Solar Phys. 68, 351. DOI. ADS.

    Article  ADS  Google Scholar 

  • Neupert, W.M.: 1968, Comparison of solar X-ray line emission with microwave emission during flares. Astrophys. J. Lett. 153, L59. DOI. ADS.

    Article  ADS  Google Scholar 

  • Polito, V., Testa, P., De Pontieu, B.: 2019, Can the superposition of evaporative flows explain broad Fe XXI profiles during solar flares? Astrophys. J. Lett. 879, L17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Polito, V., Reep, J.W., Reeves, K.K., Simões, P.J.A., Dudík, J., Del Zanna, G., Mason, H.E., Golub, L.: 2016, Simultaneous IRIS and Hinode/EIS observations and modelling of the 2014 October 27 X2.0 class flare. Astrophys. J. 816, 89. DOI. ADS.

    Article  ADS  Google Scholar 

  • Polito, V., Testa, P., Allred, J., De Pontieu, B., Carlsson, M., Pereira, T.M.D., Gošić, M., Reale, F.: 2018, Investigating the response of loop plasma to nanoflare heating using RADYN simulations. Astrophys. J. 856, 178. DOI. ADS.

    Article  ADS  Google Scholar 

  • Polito, V., Kerr, G.S., Xu, Y., Sadykov, V.M., Lorincik, J.: 2023, Solar flare ribbon fronts. I. Constraining flare energy deposition with IRIS spectroscopy. Astrophys. J. 944, 104. DOI. ADS.

    Article  ADS  Google Scholar 

  • Porth, O., Xia, C., Hendrix, T., Moschou, S.P., Keppens, R.: 2014, MPI-AMRVAC for solar and astrophysics. Astrophys. J. Suppl. 214, 4. DOI. ADS.

    Article  ADS  Google Scholar 

  • Przybylski, D., Cameron, R., Solanki, S.K., Rempel, M., Leenaarts, J., Anusha, L.S., Witzke, V., Shapiro, A.I.: 2022, Chromospheric extension of the MURaM code. Astron. Astrophys. 664, A91. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reep, J.W., Polito, V., Warren, H.P., Crump, N.A.: 2018, The duration of energy deposition on unresolved flaring loops in the solar corona. Astrophys. J. 856, 149. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rempel, M., Chintzoglou, G., Cheung, M.C.M., Fan, Y., Kleint, L.: 2023, Comprehensive radiative MHD simulations of flares above collisional polarity inversion lines. Astrophys. J. 955, 105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ruan, W., Xia, C., Keppens, R.: 2018, Solar flares and Kelvin–Helmholtz instabilities: a parameter survey. Astron. Astrophys. 618, A135. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ruan, W., Xia, C., Keppens, R.: 2019, Extreme-ultraviolet and X-ray emission of turbulent solar flare loops. Astrophys. J. Lett. 877, L11. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ruan, W., Xia, C., Keppens, R.: 2020, A fully self-consistent model for solar flares. Astrophys. J. 896, 97. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ruan, W., Yan, L., Keppens, R.: 2023, Magnetohydrodynamic turbulence formation in solar flares: 3D simulation and synthetic observations. Astrophys. J. 947, 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ruan, W., Zhou, Y., Keppens, R.: 2021, When hot meets cold: post-flare coronal rain. Astrophys. J. Lett. 920, L15. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sellers, S.G., Milligan, R.O., McAteer, R.T.J.: 2022, Call and response: a time-resolved study of chromospheric evaporation in a large solar flare. Astrophys. J. 936, 85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, C., Chen, B., Reeves, K.K., Yu, S., Polito, V., Xie, X.: 2022, The origin of underdense plasma downflows associated with magnetic reconnection in solar flares. Nat. Astron. 6, 317. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shibata, K., Takasao, S., Reeves, K.K.: 2023, Numerical study on excitation of turbulence and oscillation in above-the-loop-top region of a solar flare. Astrophys. J. 943, 106. DOI. ADS.

    Article  ADS  Google Scholar 

  • Simões, P.J.A., Kerr, G.S., Fletcher, L., Hudson, H.S., Giménez de Castro, C.G., Penn, M.: 2017, Formation of the thermal infrared continuum in solar flares. Astron. Astrophys. 605, A125. DOI. ADS.

    Article  ADS  Google Scholar 

  • Somov, B.V., Sermulina, B.J., Spektor, A.R.: 1982, Hydrodynamic response of the solar chromosphere to an elementary flare burst – part two – thermal model. Solar Phys. 81, 281. DOI. ADS.

    Article  ADS  Google Scholar 

  • Somov, B.V., Syrovatskii, S.I., Spektor, A.R.: 1981, Hydrodynamic response of the solar chromosphere to an elementary flare burst – part one – heating by accelerated electrons. Solar Phys. 73, 145. DOI. ADS.

    Article  ADS  Google Scholar 

  • Syrovatskii, S.I., Shmeleva, O.P.: 1972, Heating of plasma by high-energy electrons, and nonthermal X-ray emission in solar flares. Soviet Astron. 16, 273. ADS.

    ADS  Google Scholar 

  • Takasao, S., Shibata, K.: 2016, Above-the-loop-top oscillation and quasi-periodic coronal wave generation in solar flares. Astrophys. J. 823, 150. DOI. ADS.

    Article  ADS  Google Scholar 

  • Takasao, S., Matsumoto, T., Nakamura, N., Shibata, K.: 2015, Magnetohydrodynamic shocks in and above post-flare loops: two-dimensional simulation and a simplified model. Astrophys. J. 805, 135. DOI. ADS.

    Article  ADS  Google Scholar 

  • Testa, P., Polito, V., De Pontieu, B.: 2020, IRIS observations of short-term variability in moss associated with transient hot coronal loops. Astrophys. J. 889, 124. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tian, H., Young, P.R., Reeves, K.K., Chen, B., Liu, W., McKillop, S.: 2015, Temporal evolution of chromospheric evaporation: case studies of the M1.1 flare on 2014 September 6 and X1.6 flare on 2014 September 10. Astrophys. J. 811, 139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Veronig, A.M., Brown, J.C.: 2004, A coronal thick-target interpretation of two hard X-ray loop events. Astrophys. J. Lett. 603, L117. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vögler, A., Shelyag, S., Schüssler, M., Cattaneo, F., Emonet, T., Linde, T.: 2005, Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code. Astron. Astrophys. 429, 335. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xia, C., Teunissen, J., El Mellah, I., Chané, E., Keppens, R.: 2018, MPI-AMRVAC 2.0 for solar and astrophysical applications. Astrophys. J. Suppl. Ser. 234, 30. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yokoyama, T., Shibata, K.: 2001, Magnetohydrodynamic simulation of a solar flare with chromospheric evaporation effect based on the magnetic reconnection model. Astrophys. J. 549, 1160. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zenitani, S., Miyoshi, T.: 2011, Magnetohydrodynamic structure of a plasmoid in fast reconnection in low-beta plasmas. Phys. Plasmas 18, 022105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zharkova, V.V., Kobylinskii, V.A.: 1993, The effect of non-thermal excitation and ionization on the hydrogen emission in impulsive solar flares. Solar Phys. 143, 259. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zharkova, V.V., Brown, J.C., Syniavskii, D.V.: 1995, Electron beam dynamics and hard X-ray bremsstrahlung polarization in a flaring loop with return current and converging magnetic field. Astron. Astrophys. 304, 284. ADS.

    ADS  Google Scholar 

  • Zimovets, I.V., McLaughlin, J.A., Srivastava, A.K., Kolotkov, D.Y., Kuznetsov, A.A., Kupriyanova, E.G., Cho, I.-H., Inglis, A.R., Reale, F., Pascoe, D.J., Tian, H., Yuan, D., Li, D., Zhang, Q.M.: 2021, Quasi-periodic pulsations in solar and stellar flares: a review of underpinning physical mechanisms and their predicted observational signatures. Space Sci. Rev. 217, 66. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge the helpful input of the anonymous referee for improving the manuscript.

Funding

M.D. is supported by FWO project G0B4521N. M.D., W.R. and R.K. also received funding from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No. 833251 PROMINENT ERC-ADG 2018). W.R. was supported by a postdoctoral mandate (PDMT1/21/027) by KU Leuven. R.K. is supported by Internal Funds KU Leuven through the project C14/19/089 TRACESpace and an FWO project G0B4521N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO) and the Flemish Government, department EWI.

Author information

Authors and Affiliations

Authors

Contributions

M.D. developed the alterations of the flare module code as described in the paper, conducted the simulations and analysis, and wrote the paper. W.R. wrote the underlying flare module, assisted on the developments presented, advised on analysis, and edited the manuscript. R.K. is the lead developer of the MPI-AMRVAC code in which this simulation is run, advised on the flare module development, and edited the manuscript.

Corresponding author

Correspondence to Malcolm Keith Druett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(MP4 8.5 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Druett, M.K., Ruan, W. & Keppens, R. Chromospheric Evaporation by Particle Beams in Multi-Dimensional Flare Models. Sol Phys 298, 134 (2023). https://doi.org/10.1007/s11207-023-02224-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02224-4

Navigation