Skip to main content
Log in

Solar X-Band Imaging with the Arecibo 12-m Telescope: The Brightness Temperature and Magnetic Field of Active Regions

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Solar radio observations provide a powerful diagnostic of the physical conditions of the solar atmosphere over a wide range of heights. In this paper, we report regular solar mapping made at the X-band (8.1 – 9.2 GHz) with the Arecibo 12-m radio telescope, covering a period between 13 December 2021 and 9 April 2023. This has demonstrated its potential for identifying active regions and tracking their brightness-temperature changes. The X-band results are discussed along with the near-simultaneous datasets available from space- and ground-based observations. A comparison of magnetic properties of active regions with their emission characteristics indicates that the X-band brightness temperature provides better information of the magnetic-field strength associated with the emission and a brightness temperature in excess of 13 000 K allows us to infer the possibility of intense flares (i.e., ≳ M1 class) and coronal mass ejections. The ‘latitude–time’ distribution of the brightness temperature reveals the three-dimensional evolution of quiet regions on the Sun, coronal holes, and eruptive sites, over many solar rotations in the ascending phase of the current Solar Cycle 25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data Availability

The observed X-band datasets analyzed in the current study are available at the Arecibo Observatory data archive maintained at the Texas Advanced Computing Center (www.tacc.utexas.edu/about/help/). The solar X-band images generated during the current study are available from the corresponding author on request. The supportive images and data used in this study are all publicly available.

References

  • Bastian, T.S., Benz, A.O., Gary, D.E.: 1998, Radio emission from solar flares. Annu. Rev. Astron. Astrophys. 36, 131. DOI. ADS.

    Article  ADS  Google Scholar 

  • Benz, A.O., Monstein, C., Meyer, H., Manoharan, P.K., Ramesh, R., Altyntsev, A., Lara, A., Paez, J., Cho, K.-S.: 2009, A world-wide net of solar radio spectrometers: e-CALLISTO. Earth Moon Planets 104, 277. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bogod, V.M., Alissandrakis, C.E., Kaltman, T.I., Tokhchukova, S.K.: 2015, RATAN-600 observations of small-scale structures with high spectral resolution. Solar Phys. 290, 7. DOI. ADS.

    Article  ADS  Google Scholar 

  • Borovik, V.N., Gelfreikh, G.B., Lubyshev, B.I.: 1975, Directivity of radiation of local sources of the slowly varying component of solar radio emission at 3.2 cm. Soviet Astron. 19, 57. ADS.

    ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The large angle spectroscopic coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dabrowski, B.P., Benz, A.O.: 2009, Correlation between decimetric radio emission and hard X-rays in solar flares. Astron. Astrophys. 504, 565. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fleishman, G.D., Nita, G.M., Chen, B., Yu, S., Gary, D.E.: 2022, Solar flare accelerates nearly all electrons in a large coronal volume. Nature 606, 674. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gary, D.E., Bastian, T.S., Chen, B., Fleishman, G.D., Glesener, L.: 2018, Radio observations of solar flares. In: Murphy, E. (ed.) Science with a Next Generation Very Large Array, Astronomical Society of the Pacific Conference Series 517, 99. ADS.

    Google Scholar 

  • Gary, D., Yu, S., Chen, B., LaVilla, V.: 2020, A new view of the solar atmosphere: daily full-disk multifrequency radio images from EOVSA. In: American Astronomical Society Meeting Abstracts #235, American Astronomical Society Meeting Abstracts 235, 385.01. ADS.

    Google Scholar 

  • Grechnev, V.V., Lesovoi, S.V., Kochanov, A.A., Uralov, A.M., Altyntsev, A.T., Gubin, A.V., Zhdanov, D.A., Ivanov, E.F., Smolkov, G.Y., Kashapova, L.K.: 2018, Multiinstrument view on solar eruptive events observed with the Siberian radioheliograph: from detection of small jets up to development of a shock wave and CME. J. Atmos. Solar-Terr. Phys. 174, 46. DOI. ADS.

    Article  ADS  Google Scholar 

  • Guidice, D.A., Castelli, J.P.: 1975, Spectral distributions of microwave bursts. Solar Phys. 44, 155. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hale, G.E., Ellerman, F., Nicholson, S.B., Joy, A.H.: 1919, The magnetic polarity of sun-spots. Astrophys. J. 49, 153. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hamada, A., Asikainen, T., Mursula, K.: 2020, New homogeneous dataset of solar EUV synoptic maps from SOHO/EIT and SDO/AIA. Solar Phys. 295, 2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: 2015, The solar cycle. Living Rev. Solar Phys. 12, 4. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jaeggli, S.A., Norton, A.A.: 2016, The magnetic classification of solar active regions 1992-2015. Astrophys. J. Lett. 820, L11. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kallunki, K., Tornikoski, M., Bezrukovs, D.: 2021, Radio observations of solar active regions at 7.36 and 37 GHz. Astron. Astrophys. Trans. 32, 241. ADS.

    Article  ADS  Google Scholar 

  • Kerdraon, A., Delouis, J.-M.: 1997, The Nançay radioheliograph. In: Trottet, G. (ed.) Coronal Physics from, Radio and Space Observations 483, 192. DOI. ADS.

    Chapter  Google Scholar 

  • Krucker, S., Battaglia, M., Cargill, P.J., Fletcher, L., Hudson, H.S., MacKinnon, A.L., Masuda, S., Sui, L., Tomczak, M., Veronig, A.L., Vlahos, L., White, S.M.: 2008, Hard X-ray emission from the solar corona. Astron. Astrophys. Rev. 16, 155. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kumar, P., Manoharan, P.K., Uddin, W.: 2010, Evolution of solar magnetic field and associated multiwavelength phenomena: flare events on 2003 November 20. Astrophys. J. 710, 1195. DOI.

    Article  ADS  Google Scholar 

  • Künzel, H.: 1965, Zur Klassifikation von Sonnenfleckengruppen. Astron. Nachr. 288, 177. ADS.

    ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Phys. 275, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Manoharan, P.K.: 2010, Ooty interplanetary scintillation - remote-sensing observations and analysis of coronal mass ejections in the heliosphere. Solar Phys. 265, 137. DOI. ADS.

    Article  ADS  Google Scholar 

  • Manoharan, P.K.: 2012, Three-dimensional evolution of solar wind during solar cycles 22-24. Astrophys. J. 751, 128. DOI.

    Article  ADS  Google Scholar 

  • Manoharan, P.K., Salter, C.J., Brum, C.M., White, S.M., Perillat, P., Santoni, A., Fernandez, F., Ghosh, T., Perera, B., Venkataraman, A.: 2022, Regular solar radio imaging at arecibo: space weather perspective of evolution of active regions. arXiv. ADS.

  • Manoharan, P.K., Salter, C., Brum, C.M., White, S.M., Perillat, P., Santoni, A., Fernandez, F., Ghosh, T., Perera, B., Venkataraman, A.: 2023, Regular solar radio imaging at arecibo: space weather perspective of evolution of active regions. In: American Astronomical Society Meeting Abstracts, American Astronomical Society Meeting Abstracts 55, 226.05. ADS.

    Google Scholar 

  • Nindos, A.: 2020, Incoherent solar radio emission. Front. Astron. Space Sci. 7, 57. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nita, G.M., Gary, D.E., Lee, J.: 2004, Statistical study of two years of solar flare radio spectra obtained with the owens valley solar array. Astrophys. J. 605, 528. DOI. ADS.

    Article  ADS  Google Scholar 

  • Perera, B., Perillat, P., Fernandez, F., Manoharan, P.K., Roshi, A., Salter, C., Smith, A., Vaddi, S., McGilvray, A.: 2022, Detection of a bright burst from FRB 20220912A at 2.3 GHz with the Arecibo 12-m telescope. Astron. Telegr. 15734, 1. ADS.

    ADS  Google Scholar 

  • Perera, B., Perillat, P., Doskoch, G., Manoharan, P., McLaughlin, M.: 2023, Daily monitoring of pulsars with the Arecibo 12-m telescope: the current and future. In: American Astronomical Society Meeting Abstracts, American Astronomical Society Meeting Abstracts 55 304.10. ADS.

    Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The solar dynamics observatory (SDO). Solar Phys. 275, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ramesh, R., Subramanian, K.R., SundaraRajan, M.S., Sastry, C.V.: 1998, The Gauribidanur radioheliograph. Solar Phys. 181, 439. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Solar Phys. 275, 207. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shibasaki, K., Alissandrakis, C.E., Pohjolainen, S.: 2011, Radio emission of the quiet sun and active regions (invited review). Solar Phys. 273, 309. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thompson, B.J., Gibson, S.E., Schroeder, P.C., Webb, D.F., Arge, C.N., Bisi, M.M., de Toma, G., Emery, B.A., Galvin, A.B., Haber, D.A., Jackson, B.V., Jensen, E.A., Leamon, R.J., Lei, J., Manoharan, P.K., Mays, M.L., McIntosh, P.S., Petrie, G.J.D., Plunkett, S.P., Qian, L., Riley, P., Suess, S.T., Tokumaru, M., Welsch, B.T., Woods, T.N.: 2011, A snapshot of the sun near solar minimum: the whole heliosphere interval. Solar Phys. 274, 29. DOI. ADS.

    Article  ADS  Google Scholar 

  • White, S.M.: 1999, Radio versus EUV/X-ray observations of the solar atmosphere. Solar Phys. 190, 309. DOI. ADS.

    Article  ADS  Google Scholar 

  • White, S.M., Benz, A.O., Christe, S., Fárník, F., Kundu, M.R., Mann, G., Ning, Z., Raulin, J.-P., Silva-Válio, A.V.R., Saint-Hilaire, P., Vilmer, N., Warmuth, A.: 2011, The relationship between solar radio and hard X-ray emission. Space Sci. Rev. 159, 225. DOI. ADS.

    Article  ADS  Google Scholar 

  • Woods, T.N., Eparvier, F.G., Hock, R., Jones, A.R., Woodraska, D., Judge, D., Didkovsky, L., Lean, J., Mariska, J., Warren, H., McMullin, D., Chamberlin, P., Berthiaume, G., Bailey, S., Fuller-Rowell, T., Sojka, J., Tobiska, W.K., Viereck, R.: 2012, Extreme ultraviolet variability experiment (EVE) on the solar dynamics observatory (SDO): overview of science objectives, instrument design, data products, and model developments. Solar Phys. 275, 115. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yan, Y., Chen, Z., Wang, W., Liu, F., Geng, L., Chen, L., Tan, C., Chen, X., Su, C., Tan, B.: 2021, Mingantu spectral radioheliograph for solar and space weather studies. Front. Astron. Space Sci. 8, 584043. DOI. ADS.

    Article  Google Scholar 

  • Zhang, J., White, S.M., Kundu, M.R.: 1998, The height structure of the solar atmosphere from the extreme-ultraviolet perspective. Astrophys. J. 504, L127. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

PKM wishes to thank Tapasi Ghosh for the numerous useful discussions and suggestions during the stages of analysis and the preparation of the manuscript.

Funding

The Arecibo Observatory is operated by the University of Central Florida under a cooperative agreement with the National Science Foundation (AST-1822073), and in alliance with Universidad Ana G. Méndez and Yang Enterprises, Inc. P.K.M., P.P., F.F., B.P., A.V., and C.M.B. are supported by the above NSF fund.

Author information

Authors and Affiliations

Authors

Contributions

Manoharan did observations and analysis of the data. Manoharan, Salter, and White wrote the main manuscript text. Perera partial planing of the observations. Perillat, Fernandez, Venkataraman, and Brum helped in the maintenance and operation of the observing system. All authors reviewed the manuscript.

Corresponding author

Correspondence to Periasamy K. Manoharan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manoharan, P.K., Salter, C.J., White, S.M. et al. Solar X-Band Imaging with the Arecibo 12-m Telescope: The Brightness Temperature and Magnetic Field of Active Regions. Sol Phys 298, 124 (2023). https://doi.org/10.1007/s11207-023-02217-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02217-3

Keywords

Navigation