Skip to main content
Log in

The Effect of Mass Flow on Slow MHD Oscillations of Curved Solar Coronal Loops

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Slow-mode standing waves are examined in the model of a bent magnetic slab with a plasma flow directed along curved magnetic field lines. The dispersion relation is obtained and studied both numerically and analytically regarding the principal slow mode. It is found that flow decreases the longitudinal oscillating motions and increases the radial kink-like motions, both produced by the principal slow mode. This feature may result in the development of Kelvin-Helmholtz instability when the flow speed exceeds the critical value, and this threshold depends on the azimuthal number \(m\). When flow exists, a quasi-stationary wave structure that satisfies the footpoint boundary conditions has the form of a propagating wave modulated by a sinusoidal envelope. The corresponding eigenfrequencies of oscillations are found to decrease with increasing flow speed until \(u< c_{Ti}\). The results obtained are used for seismological estimation of a plasma flow speed in coronal fan loops experiencing slow mode oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abedini, A., Safari, H., Nasiri, S.: 2012, Slow-mode oscillations and damping of hot solar coronal loops. Solar Phys. 280, 137.

    Article  ADS  Google Scholar 

  • Barbulescu, M., Erdélyi, R.: 2018, Magnetoacoustic waves and the Kelvin-Helmholtz instability in a steady asymmetric slab. I: the effects of varying density ratios. Solar Phys. 293, 86.

    Article  ADS  Google Scholar 

  • Berghmans, D., Clette, F.: 1999, Active region EUV transient brightenings - first results by EIT of SOHO JOP 80. Solar Phys. 186, 207.

    Article  ADS  Google Scholar 

  • Bryans, P., McIntosh, S.W., De Moortel, I., De Pontieu, B.: 2016, On the connection between propagating solar coronal disturbances and chromospheric footpoints. Astrophys. J. Lett. 829, L18.

    Article  ADS  Google Scholar 

  • De Moortel, I.: 2006, Propagating magnetohydrodynamics waves in coronal loops. Phil. Trans. Roy. Soc. London Ser. A 364, 461.

    ADS  Google Scholar 

  • De Moortel, I.: 2009, Longitudinal waves in coronal loops. Space Sci. Rev. 149, 65.

    Article  ADS  Google Scholar 

  • De Moortel, I., Hood, A.W.: 2004, The damping of slow MHD waves in solar coronal magnetic fields. II. The effect of gravitational stratification and field line divergence. Astron. Astrophys. 415, 705.

    Article  ADS  Google Scholar 

  • De Moortel, I., Ireland, J., Walsh, R.W.: 2000, Observation of oscillations in coronal loops. Astron. Astrophys. 355, L23.

    ADS  Google Scholar 

  • Goossens, M., Hollweg, J.V., Sakurai, T.: 1992, Resonant behaviour of magnetohydrodynamic waves on magnetic flux tubes - part three. Solar Phys. 138, 233.

    Article  ADS  Google Scholar 

  • Harra, L.K., Sakao, T., Mandrini, C.H., Hara, H., Imada, S., Young, P.R., et al.: 2008, Outflows at the edges of active regions: contribution to solar wind formation? Astrophys. J. Lett. 676, L147.

    Article  ADS  Google Scholar 

  • Joarder, P.S., Nakariakov, V.M., Roberts, B.: 1997, A manifestation of negative energy waves in the solar atmosphere. Solar Phys. 176, 285.

    Article  ADS  Google Scholar 

  • Kolotkov, D.Y.: 2022, Coronal seismology by slow waves in non-adiabatic conditions. Front. Astron. Space Sci. 9, 1073664.

    Article  ADS  Google Scholar 

  • Kolotkov, D.Y., Duckenfield, T.J., Nakariakov, V.M.: 2020, Seismological constraints on the solar coronal heating function. Astron. Astrophys. 644, A33.

    Article  ADS  Google Scholar 

  • Krishna Prasad, S., Banerjee, D., Singh, J.: 2012, Oscillations in active region fan loops: observations from EIS/Hinode and AIA/SDO. Solar Phys. 281, 67.

    ADS  Google Scholar 

  • Kumar, P., Innes, D.E., Inhester, B.: 2013, Solar Dynamics Observatory/Atmospheric Imaging Assembly observations of a reflecting longitudinal wave in a coronal loop. Astrophys. J. 779, L7.

    Article  ADS  Google Scholar 

  • Kumar, P., Nakariakov, V.M., Cho, K.-S.: 2015, X-ray and EUV observations of simultaneous short and long period oscillations in hot coronal arcade loops. Astrophys. J. 804, 4.

    Article  ADS  Google Scholar 

  • Lopin, I., Nagorny, I.: 2023, Slow mode oscillations in curved arcade loops. Mon. Not. Roy. Astron. Soc. 519, 5579.

    Article  ADS  Google Scholar 

  • Mandal, S., Samanta, T., Banerjee, D., Krishna Prasad, S., Teriaca, L.: 2015, Propagating disturbances along fan-like coronal loops in an active region. Res. Astron. Astrophys. 15, 1832.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Roberts, B.: 1995, Magnetosonic waves in structured atmospheres with steady flows, I. Solar Phys. 159, 213.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Tsiklauri, D., Kelly, A., Arber, T.D., Aschwanden, M.J.: 2004, Acoustic oscillations in solar and stellar flaring loops. Astron. Astrophys. 414, L25.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Kosak, M.K., Kolotkov, D.Y., et al.: 2019, Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations. Astrophys. J. Lett. 874, L1.

    Article  ADS  Google Scholar 

  • Ofman, L., Wang, T.: 2002, Hot coronal loop oscillations observed by SUMER: slow magnetosonic wave damping by thermal conduction. Astrophys. J. Lett. 580, L85.

    Article  ADS  Google Scholar 

  • Ofman, L., Wang, T.J., Davila, J.M.: 2012, Slow magnetosonic waves and fast flows in active region loops. Astrophys. J. 754, 111.

    Article  ADS  Google Scholar 

  • Ogrodowczyk, R., Murawski, K., Solanki, S.K.: 2009, Slow magnetoacoustic standing waves in a curved solar coronal slab. Astron. Astrophys. 495, 313.

    Article  ADS  MATH  Google Scholar 

  • Pant, V., Tiwari, A., Yuan, D., Banerjee, D.: 2017, First imaging observation of standing slow wave in coronal fan loops. Astrophys. J. Lett. 847, L5.

    Article  ADS  Google Scholar 

  • Ruderman, M.S.: 2018, Negative energy standing wave instability in the presence of flow. J. Plasma Phys. 84, 905840101.

    Article  Google Scholar 

  • Schrijver, C.J., Title, A.M., Berger, T.E., Fletcher, L., Hurlbert, N.E.: 1999, Nightingale: a new view of the solar outer atmosphere by the transition region and coronal explorer. Solar Phys. 187, 261.

    Article  ADS  Google Scholar 

  • Selwa, M., Murawski, K., Solanki, S.K.: 2005, Excitation and damping of slow magnetosonic standing waves in a solar coronal loop. Astron. Astrophys. 436, 701.

    Article  ADS  Google Scholar 

  • Selwa, M., Ofman, L., Murawski, K.: 2007, Numerical simulations of slow standing waves in a curved solar coronal loop. Astrophys. J. Lett. 668, L83.

    Article  ADS  Google Scholar 

  • Sigalotti, L.D.G., Mendoza-Briceño, C.A., Luna-Cardozo, M.: 2007, Dissipation of standing slow magnetoacoustic waves in hot coronal loops. Solar Phys. 246, 187.

    Article  ADS  Google Scholar 

  • Taroyan, Y., Erdélyi, R., Doyle, J.G., Bradshaw, S.J.: 2005, Footpoint excitation of standing acoustic waves in coronal loops. Astron. Astrophys. 438, 713.

    Article  ADS  Google Scholar 

  • Uritsky, V.M., Davila, J.M., Viall, N.M., Ofman, L.: 2013, Measuring temperature-dependent propagating disturbances in coronal fan loops using multiple SDO/AIA channels and the surfing transform technique. Astrophys. J. 778, 26.

    Article  ADS  Google Scholar 

  • Van Doorsselaere, T., Wardle, N., Del Zanna, G., Jansari, K., Verwichte, E., Nakariakov, V.M.: 2011, The first measurement of the adiabatic index in the solar corona using time-dependent spectroscopy of hinode/EIS observations. Astrophys. J. 727, L32.

    Article  ADS  Google Scholar 

  • Wang, T.: 2011, Standing slow-mode waves in hot coronal loops: observations, modeling, and coronal seismology. Space Sci. Rev. 158, 397.

    Article  ADS  Google Scholar 

  • Wang, T., Innes, D.E., Qiu, J.: 2007, Determination of the coronal magnetic field from hot-loop oscillations observed by SUMER and SXT. Astrophys. J. Lett. 656, 598.

    Article  ADS  Google Scholar 

  • Wang, T.J., Ofman, L.: 2019, Determination of transport coefficients by coronal seismology of flare-induced slow-mode waves: numerical parametric study of a 1D loop model. Astrophys. J. 886, 2.

    Article  ADS  Google Scholar 

  • Wang, T., Solanki, S.K., Curdt, W., Innes, D.E., Dammasch, I.E.: 2002, Doppler shift oscillations of hot solar coronal plasma seen by SUMER: a signature of loop oscillations? Astrophys. J. Lett. 574, L101.

    Article  ADS  Google Scholar 

  • Wang, T., Ofman, L., Sun, X., Provornikova, E., Davila, J.M.: 2015, Evidence of thermal conduction suppression in a solar flaring loop by coronal seismology of slow-mode waves. Astrophys. J. Lett. 811, L13.

    Article  ADS  Google Scholar 

  • Wang, T., Ofman, L., Yuan, D., et al.: 2021, Slow-mode magnetoacoustic waves in coronal loops. Space Sci. Rev. 217, 34.

    Article  ADS  Google Scholar 

  • Winebarger, A.R., Warren, H., van Ballegooijen, A., DeLuca, E.E., Golub, L.: 2002, Steady flows detected in extreme-ultraviolet loops. Astrophys. J. Lett. 567, L89.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Lopin is the single author of this article.

Corresponding author

Correspondence to Igor Lopin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopin, I. The Effect of Mass Flow on Slow MHD Oscillations of Curved Solar Coronal Loops. Sol Phys 298, 101 (2023). https://doi.org/10.1007/s11207-023-02197-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02197-4

Keywords

Navigation