Skip to main content
Log in

On the Possibility of Measuring Solar Flattening from Photometry Measurements Taken during Solar Eclipses Seen from the Earth’s Surface or Earth Orbit

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Solar oblateness is a key parameter that provides a strong constraint for understanding the variations in total solar irradiance as well as the differential rotation of the Sun. Furthermore, it takes part in the evaluation of General Relativity theory. In this paper, we propose a procedure to measure solar flattening based on modeling the light curve during a solar eclipse observed from the ground or from Earth orbit. We apply this procedure to synthetic data corresponding to the solar eclipse observed from Lakeland (Queensland, North Australia) on November 13, 2012. The results show that accurate measurements of the solar equator-to-polar radius difference can reach 1 km when based on the current DE430 ephemeris and the LRO DEM data (equivalent to \(1.4 \times 10^{-6}\) in solar oblateness).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Antia, H.M., Basu, S., Chitre, S.M.: 2008, Solar rotation rate and its gradients during cycle 23. Astrophys. J. 681(1), 680.

    Article  Google Scholar 

  • Armstrong, J., Kuhn, J.R.: 1999, Interpreting the solar limb shape distortions. Astrophys. J. 525(1), 533.

    Article  Google Scholar 

  • Chandrasekhar, S.: 1933, The equilibrium of distorted polytopes: (I). The rotational problem. Mon. Not. Roy. Astron. Soc. 93, 390.

    Article  MATH  Google Scholar 

  • Chapman, G.A.: 2008, Aspects of our Sun. Science 322(5901), 535.

    Article  Google Scholar 

  • Damiani, C., Rozelot, J.P., Lefebvre, S., Kilcik, A., Kosovichev, A.G.: 2011, A brief history of the solar oblateness. A review. J. Atmos. Solar-Terr. Phys. 73(2 – 3), 241. DOI.

    Article  Google Scholar 

  • Einstein, A.: 1916, Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 354, 769.

    Article  MATH  Google Scholar 

  • Emilio, M., Bush, R.I., Kuhn, J., Scherrer, P.: 2007, A changing solar shape. Astrophys. J. 660(2), L161. DOI.

    Article  Google Scholar 

  • Eren, S., Rozelot, J.P.: 2023, Exploring the temporal variation of the solar quadrupole moment \(J_{2}\). Astrophys. J. 942(2), 90.

    Article  Google Scholar 

  • Fivian, M.D., Hudson, H.S., Lin, R.P., Zahid, H.J.: 2008, A large excess in apparent solar oblateness due to surface magnetism. Science 322(5901), 560. DOI.

    Article  Google Scholar 

  • Irbah, A., Meftah, M., Hauchecorne, A., Djafer, D., Corbard, T., Bocquier, M., et al.: 2014, New space value of the solar oblateness obtained with PICARD. Astrophys. J. 785(2), 89. DOI.

    Article  Google Scholar 

  • Irbah, A., Mecheri, R., Damé, L., Djafer, D.: 2019, Variations of solar oblateness with the 22 yr magnetic cycle explain apparently inconsistent measurements. Astrophys. J. Lett. 875(2), L26. DOI.

    Article  Google Scholar 

  • Kitiashvili, I.N., Kosovichev, A.G., Wray, A.A., Sadykov, V.M., Guerrero, G.: 2023, Leptocline as a shallow substructure of near-surface shear layer in 3D radiative hydrodynamic simulations. Mon. Not. Roy. Astron. Soc. 518(1), 504. DOI.

    Article  Google Scholar 

  • Klein, P.P.: 2012, On the ellipsoid and plane intersection equation. Appl. Math. 3(11), 1634.

    Article  Google Scholar 

  • Kuhn, J.R., Bush, R., Emilio, M., Scholl, I.F.: 2012, The precise solar shape and its variability. Science 337(6102), 1638. DOI.

    Article  Google Scholar 

  • Le Verrier, U.: 1846, Rapport à l’Académie des Sciences le 31 août 1846 et 1859. Ann. Obs. Paris 5, 104.

    Google Scholar 

  • Mecheri, R., Abdelatif, T., Irbah, A., Provost, J., Berthomieu, G.: 2004, New values of gravitational moments \(J_{2}\) and \(J_{4}\) deduced from helioseismology. Solar Phys. 222(2), 191. DOI.

    Article  Google Scholar 

  • Meftah, M., Hauchecorne, A., Irbah, A., Corbard, T., Ikhlef, R., Morand, F., et al.: 2015a, On the constancy of the diameter of the Sun during the rising phase of solar cycle 24. Astrophys. J. 808(1), 4. DOI.

    Article  Google Scholar 

  • Meftah, M., Irbah, A., Hauchecorne, A., Corbard, T., Turck-Chièze, S., Hochedez, J.-F., et al.: 2015b, On the determination and constancy of the solar oblateness. Solar Phys. 290(3), 673. DOI.

    Article  Google Scholar 

  • Meftah, M., Hauchecorne, A., Bush, R.I., Irbah, A.: 2016, On HMI solar oblateness during solar cycle 24 and impact of the space environment on results. Adv. Space Res. 58(7), 1425. DOI.

    Article  Google Scholar 

  • Newcomb, S.: 1895, The Elements of the Four Inner Planets and the Fundamental Constants of Astronomy, US Government Printing Office.

    Google Scholar 

  • Pireaux, S., Rozelot, J.P.: 2003, Solar quadrupole moment and purely relativistic gravitation contributions to Mercury’s perihelion advance. Astrophys. Space Sci. 284(4), 1159.

    Article  Google Scholar 

  • Pitjeva, E.V.: 1993, Experimental testing of relativistic effects, variability of the gravitational constant and topography of Mercury surface from radar observations 1964 – 1989. Celest. Mech. Dyn. Astron. 55(4), 313.

    Article  MathSciNet  Google Scholar 

  • Reis Neto, E., Andrei, A.H., Penna, J.L., Jilinski, E.G., Puliaev, S.P.: 2003, Observed variations of the solar diameter in 1998/2000. Solar Phys. 212(1), 7. DOI.

    Article  Google Scholar 

  • Rozelot, J.P., Damiani, C.: 2011, History of solar oblateness measurements and interpretation. Eur. Phys. J. H 36(3), 407.

    Google Scholar 

  • Rozelot, J.P., Damiani, C., Pireaux, S.: 2009, Probing the solar surface: the oblateness and astrophysical consequences. Astrophys. J. 703(2), 1791.

    Article  Google Scholar 

  • Rozelot, J.P., Eren, S.: 2020, Exploring the temporal variation of the solar quadrupole moment from relativistic gravitation contributions: a fortuitous circumstance? Adv. Space Res. 65(12), 2821.

    Article  Google Scholar 

  • Sofia, S., Girard, T.M., Sofia, U.J., Twigg, L., Heaps, W., Thuillier, G.: 2013, Variation of the diameter of the Sun as measured by the Solar Disk Sextant (SDS). Mon. Not. Roy. Astron. Soc. 436(3), 2151. DOI.

    Article  Google Scholar 

  • Sturrock, P.A., Gilvarry, J.J.: 1967, Solar oblateness and magnetic field. Nature 216(5122), 1280.

    Article  Google Scholar 

  • Wang, Y.B., Yan, J.G., Ye, M., Yang, Y.-Z., Li, F., Barriot, J.-P.: 2021, Computation of the atmosphere-less light intensity curve during a total solar eclipse by using Lunar Reconnaissance Orbiter topography data and the DE430 astronomical ephemeris. Res. Astron. Astrophys. 21(1), 011. DOI.

    Article  Google Scholar 

  • Wu, J., Yuan, Y., Gong, H., Tseng, T.L.: 2018, Inferring 3D ellipsoids based on cross-sectional images with applications to porosity control of additive manufacturing. IISE Trans. 50(7), 570. DOI.

    Article  Google Scholar 

Download references

Acknowledgments

The J2000 frame data provided by SPICE system and ephemeris/topography data provided by JPL/NASA. This work is supported by the National Natural Science Foundation of China (42030110, U1831132); Jean-Pierre Barriot is supported by a DAR fund in planetology from the French Space Agency (CNES). The Lakeland photometric data were acquired with special funding from CNES as part of the “ground-truth” of the PICARD satellite mission.

Author information

Authors and Affiliations

Authors

Contributions

Jean-Pierre Barriot and Jianguo Yan conceived of the presented idea. Jean-Pierre Barriot and Yunbo Wang developed the theory and performed the computations. Yunbo Wang wrote the main manuscript text with support from Jean-Pierre Barriot and Jianguo Yan. Jianguo Yan and Jean-Pierre Barriot helped supervise the project. All authors reviewed the manuscript.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yan, J. & Barriot, JP. On the Possibility of Measuring Solar Flattening from Photometry Measurements Taken during Solar Eclipses Seen from the Earth’s Surface or Earth Orbit. Sol Phys 298, 76 (2023). https://doi.org/10.1007/s11207-023-02172-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02172-z

Keywords

Navigation