Skip to main content

Advertisement

Log in

The Possible Cause of Most Intense Geomagnetic Superstorm of the 21st Century on 20 November 2003

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

An extreme geomagnetic storm has the potential to affect various technologies and activities in space and on the ground, e.g., power grids, oil and gas industries, communications, ground transportation, satellite infrastructure, global navigation satellite systems, aviation, etc. Therefore, it is considered a major source of risk by various governmental agencies and corporations at the international level. All notable space weather events (superstorms) are caused by interplanetary coronal mass ejections (ICMEs). But not every ICME leads to an extreme storm. Moreover, how does an extreme storm form? Or which explicit characteristic of ICME actually is responsible for inducing a superstorm? Here, we re-investigate the ICME characteristics that contribute to the most intense storm of the current century that occurred on 20 November 2003. Interestingly, the studied ICME magnetic cloud shows characteristics of extremely flattened (pancaked) structure i.e. quasi-planar magnetic structure (PMS). The pancaked ICME shows less adiabatic expansion than usual in the compressed direction, which leads to strong magnetic field strength, high plasma density, high solar wind speed, high dynamic pressure, and a high eastward interplanetary electric field. Here, we propose that the ICME that transformed into a quasi-PMS has the aforementioned enhanced features with strong southward magnetic field component that contributes to efficiently transferring plasma and energy into the Earth’s magnetosphere to cause the observed superstorm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data Availability

The utilized data in this analysis is taken from Wind spacecraft. The Wind data are publicly available at (1) NASA’s Goddard Space Flight Center (GSFC) https://wind.nasa.gov/data.php, and (2) Coordinated Data Analysis Web (CDAWeb) https://cdaweb.gsfc.nasa.gov/pub/data/wind/.

References

  • Akasofu, S.-I.: 1981, Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 28(2), 121.

    Article  ADS  Google Scholar 

  • Akasofu, S.-I.: 2018, A review of the current understanding in the study of geomagnetic storms. Int. J. Earth Sci. Geophys. 4(1), 18. DOI.

    Article  Google Scholar 

  • Baker, D., Kanekal, S., Li, X., Monk, S., Goldstein, J., Burch, J.: 2004, An extreme distortion of the Van Allen belt arising from the ‘Hallowe’en’ solar storm 2003. Nature 432(7019), 878.

    Article  ADS  Google Scholar 

  • Balan, N., Skoug, R., Tulasi Ram, S., Rajesh, P., Shiokawa, K., Otsuka, Y., Batista, I., Ebihara, Y., Nakamura, T.: 2014, CME front and severe space weather. J. Geophys. Res. Space Phys. 119(12), 10.

    Article  Google Scholar 

  • Balasis, G., Daglis, I., Zesta, E., Papadimitriou, C., Georgiou, M., Haagmans, R., Tsinganos, K.: 2012, ULF wave activity during the 2003 Halloween superstorm: multipoint observations from CHAMP, Cluster and Geotail missions. In: Annales Geophysicae 30, 1751. DOI.

    Chapter  Google Scholar 

  • Bruinsma, S., Forbes, J.M., Nerem, R.S., Zhang, X.: 2006, Thermosphere density response to the 20–21 November 2003 solar and geomagnetic storm from Champ and Grace accelerometer data. J. Geophys. Res. Space Phys. 111(A6), A06303. DOI.

    Article  ADS  Google Scholar 

  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. J. Geophys. Res. Space Phys. 86(A8), 6673.

    Article  ADS  Google Scholar 

  • Cannon, P., Angling, M., Barclay, L., Curry, C., Dyer, C., Edwards, R., Greene, G., Hapgood, M., Horne, R.B., Jackson, D., et al.: 2013, Extreme Space Weather: Impacts on Engineered Systems and Infrastructure, Royal Academy of Engineering.

    Google Scholar 

  • Chandra, R., Pariat, E., Schmieder, B., Mandrini, C.H., Uddin, W.: 2010, How can a negative magnetic helicity active region generate a positive helicity magnetic cloud? Solar Phys. 261(1), 127. DOI. ADS

    Article  ADS  Google Scholar 

  • Chi, P., Russell, C., Foster, J., Moldwin, M., Engebretson, M., Mann, I.: 2005, Density enhancement in plasmasphere-ionosphere plasma during the 2003 Halloween superstorm: observations along the 330th magnetic meridian in North America. Geophys. Res. Lett. 32(3), L03S07.

    Article  Google Scholar 

  • Chi, Y., Shen, C., Luo, B., Wang, Y., Xu, M.: 2018, Geoeffectiveness of stream interaction regions from 1995 to 2016. Space Weather 16(12), 1960.

    Article  ADS  Google Scholar 

  • Cliver, E.W., Svalgaard, L.: 2004, The 1859 solar–terrestrial disturbance and the current limits of extreme space weather activity. Solar Phys. 224(1 – 2), 407.

    Article  ADS  Google Scholar 

  • Daglis, I.A., Thorne, R.M., Baumjohann, W., Orsini, S.: 1999, The terrestrial ring current: origin, formation, and decay. Rev. Geophys. 37(4), 407.

    Article  ADS  Google Scholar 

  • Davies, E.E., Möstl, C., Owens, M., Weiss, A., Amerstorfer, T., Hinterreiter, J., Bauer, M., Bailey, R., Reiss, M., Forsyth, R., et al.: 2021, In situ multi-spacecraft and remote imaging observations of the first CME detected by Solar Orbiter and BepiColombo. Astron. Astrophys. 656, A2. DOI.

    Article  Google Scholar 

  • Desai, R.T., Zhang, H., Davies, E.E., Stawarz, J.E., Mico-Gomez, J., Iváñez-Ballesteros, P.: 2020, Three-dimensional simulations of solar wind preconditioning and the 23 July 2012 interplanetary coronal mass ejection. Solar Phys. 295(9), 130.

    Article  ADS  Google Scholar 

  • Dungey, J.W.: 1961, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6(2), 47.

    Article  ADS  Google Scholar 

  • Eastwood, J., Biffis, E., Hapgood, M., Green, L., Bisi, M., Bentley, R., Wicks, R., McKinnell, L.-A., Gibbs, M., Burnett, C.: 2017, The economic impact of space weather: where do we stand? Risk Anal. 37(2), 206.

    Article  Google Scholar 

  • Echer, E., Gonzalez, W., Tsurutani, B., Gonzalez, A.: 2008, Interplanetary conditions causing intense geomagnetic storms (Dst ≤ -100 nT) during solar cycle 23 (1996–2006). J. Geophys. Res. Space Phys. 113(A5), A05221. DOI.

    Article  ADS  Google Scholar 

  • Farrugia, C., Dunlop, M., Geurts, F., Balogh, A., Southwood, D., Bryant, D., Neugebauer, M., Etemadi, A.: 1990, An interplanetary planar magnetic structure oriented at a large (80 deg) angle to the Parker spiral. Geophys. Res. Lett. 17(8), 1025.

    Article  ADS  Google Scholar 

  • Feng, X.: 2020, Current status of MHD simulations for space weather. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, Springer, 1.

    Chapter  Google Scholar 

  • Fok, M.-C., Moore, T.E., Slinker, S.P., Fedder, J.A., Delcourt, D.C., Nosé, M., Chen, S.-H.: 2011, Modeling the superstorm in November 2003. J. Geophys. Res. Space Phys. 116, A00J17. DOI.

    Article  Google Scholar 

  • Gold, T., Hoyle, F.: 1960, On the origin of solar flares. Mon. Not. Roy. Astron. Soc. 120(2), 89.

    Article  ADS  Google Scholar 

  • Gonzalez, W., Mozer, F.: 1974, A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field. J. Geophys. Res. 79(28), 4186.

    Article  ADS  Google Scholar 

  • Gonzalez, W., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B., Vasyliunas, V.: 1994, What is a geomagnetic storm? J. Geophys. Res. Space Phys. 99(A4), 5771.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Tsurutani, B.T.: 1987, Criteria of interplanetary parameters causing intense magnetic storms (Dst < 100 nT). Planet. Space Sci. 35(9), 1101.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Tsurutani, B.T., Gonzalez, A.L., Smith, E.J., Tang, F., Akasofu, S.-I.: 1989, Solar wind-magnetosphere coupling during intense magnetic storms (1978 – 1979). J. Geophys. Res. Space Phys. 94(A7), 8835.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., De Gonzalez, A.C., Dal Lago, A., Tsurutani, B.T., Arballo, J.K., Lakhina, G., Buti, B., Ho, C.M., Wu, S.-T.: 1998, Magnetic cloud field intensities and solar wind velocities. Geophys. Res. Lett. 25(7), 963.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Liu, Y., Michalek, G., Vourlidas, A., Kaiser, M., Howard, R.: 2005a, Coronal mass ejections and other extreme characteristics of the 2003 October–November solar eruptions. J. Geophys. Res. Space Phys. 110, A09S15. DOI.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Xie, H., Lepping, R., Howard, R.: 2005b, Solar source of the largest geomagnetic storm of cycle 23. Geophys. Res. Lett. 32, L12S09. DOI.

    Article  Google Scholar 

  • Grechnev, V., Uralov, A., Chertok, I., Belov, A., Filippov, B., Slemzin, V., Jackson, B.: 2014b, A challenging solar eruptive event of 18 November 2003 and the causes of the 20 November geomagnetic superstorm. IV. Unusual magnetic cloud and overall scenario. Solar Phys. 289(12), 4653.

    Article  ADS  Google Scholar 

  • Grechnev, V., Uralov, A., Slemzin, V., Chertok, I., Filippov, B., Rudenko, G., Temmer, M.: 2014a, A challenging solar eruptive event of 18 November 2003 and the causes of the 20 November geomagnetic superstorm. I. Unusual history of an eruptive filament. Solar Phys. 289(1), 289.

    Article  ADS  Google Scholar 

  • Hapgood, M.: 2012, Astrophysics: prepare for the coming space weather storm. Nature 484(7394), 311.

    Article  ADS  Google Scholar 

  • Hayakawa, H., Ebihara, Y., Pevtsov, A.A., Bhaskar, A., Karachik, N., Oliveira, D.M.: 2020, Intensity and time series of extreme solar-terrestrial storm in March 1946. Mon. Not. Roy. Astron. Soc. 497(4), 5507.

    Article  ADS  Google Scholar 

  • Hu, Q., Sonnerup, B.U.: 2002, Reconstruction of magnetic clouds in the solar wind: orientations and configurations. J. Geophys. Res. Space Phys. 107, 1142. DOI.

    Article  ADS  Google Scholar 

  • Jones, G., Balogh, A., Horbury, T.: 1999, Observations of heliospheric planar and offset-planar magnetic structures. Geophys. Res. Lett. 26(1), 13.

    Article  ADS  Google Scholar 

  • Jones, G.H., Balogh, A.: 2001, Planar structuring of magnetic fields at solar minimum and maximum. The 3-D Heliosphere at Solar Maximum 97, 165. DOI.

    Article  Google Scholar 

  • Kataoka, R., Watari, S., Shimada, N., Shimazu, H., Marubashi, K.: 2005a, Downstream structures of interplanetary fast shocks associated with coronal mass ejections. Geophys. Res. Lett. 32, L12103. DOI.

    Article  ADS  Google Scholar 

  • Kataoka, R., Fairfield, D., Sibeck, D., Rastätter, L., Fok, M.-C., Nagatsuma, T., Ebihara, Y.: 2005b, Magnetosheath variations during the storm main phase on 20 November 2003: evidence for solar wind density control of energy transfer to the magnetosphere. Geophys. Res. Lett. 32, L21108. DOI.

    Article  ADS  Google Scholar 

  • Kataoka, R., Ebisuzaki, T., Kusano, K., Shiota, D., Inoue, S., Yamamoto, T., Tokumaru, M.: 2009, Three-dimensional MHD modeling of the solar wind structures associated with 13 December 2006 coronal mass ejection. J. Geophys. Res. Space Phys. 114, A10102. DOI.

    Article  ADS  Google Scholar 

  • Kataoka, R., Shiota, D., Kilpua, E., Keika, K.: 2015, Pileup accident hypothesis of magnetic storm on 17 March 2015. Geophys. Res. Lett. 42(13), 5155.

    Article  ADS  Google Scholar 

  • Kilpua, E., Koskinen, H.E., Pulkkinen, T.I.: 2017, Coronal mass ejections and their sheath regions in interplanetary space. Living Rev. Solar Phys. 14(1), 5.

    Article  ADS  Google Scholar 

  • Koehn, G.J., Desai, R.T., Davies, E.E., Forsyth, R.J., Eastwood, J.P., Poedts, S.: 2022, Successive interacting coronal mass ejections: how to create a perfect storm. Astrophys. J. 941(2), 139.

    Article  ADS  Google Scholar 

  • Kumar, P., Manoharan, P., Uddin, W., Mahalakshmi, K.: 2011, On the source of the super-storm of solar-cycle# 23 associated with the solar flares on 18 November 2003. In: Advances in Geosciences: Volume 27: Solar Terrestrial (ST), World Scientific, 129. DOI.

    Chapter  Google Scholar 

  • Kumar, S., Veenadhari, B., Tulasi Ram, S., Selvakumaran, R., Mukherjee, S., Singh, R., Kadam, B.: 2015, Estimation of interplanetary electric field conditions for historical geomagnetic storms. J. Geophys. Res. Space Phys. 120(9), 7307.

    Article  ADS  Google Scholar 

  • Lakhina, G., Alex, S., Tsurutani, B., Gonzalez, W.: 2005, Research on historical records of geomagnetic storms. Proc. Int. Astron. Union 226, 3. DOI.

    Article  Google Scholar 

  • Lepping, R., Behannon, K.: 1980, Magnetic field directional discontinuities: 1. Minimum variance errors. J. Geophys. Res. Space Phys. 85(A9), 4695.

    Article  ADS  Google Scholar 

  • Liu, Y.D., Luhmann, J.G., Kajdič, P., Kilpua, E.K., Lugaz, N., Nitta, N.V., Möstl, C., Lavraud, B., Bale, S.D., Farrugia, C.J., et al.: 2014, Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nat. Commun. 5, 3481.

    Article  ADS  Google Scholar 

  • Lugaz, N., Temmer, M., Wang, Y., Farrugia, C.J.: 2017, The interaction of successive coronal mass ejections: a review. Solar Phys. 292(4), 64.

    Article  ADS  Google Scholar 

  • Lundquist, S.: 1950, Magnetohydrostatic fields. Ark. Fys. 2, 361.

    MathSciNet  MATH  Google Scholar 

  • Manchester, W.B. IV, Gombosi, T.I., Roussev, I., De Zeeuw, D.L., Sokolov, I., Powell, K.G., Tóth, G., Opher, M.: 2004, Three-dimensional MHD simulation of a flux rope driven CME. J. Geophys. Res. Space Phys. 109, A01102. DOI.

    Article  ADS  Google Scholar 

  • Mannucci, A., Tsurutani, B., Iijima, B., Komjathy, A., Saito, A., Gonzalez, W., Guarnieri, F., Kozyra, J., Skoug, R.: 2005, Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween storms”. Geophys. Res. Lett. 32, L12S02. DOI.

    Article  Google Scholar 

  • Nakagawa, T.: 1993, Solar source of the interplanetary planar magnetic structures. Solar Phys. 147(1), 169.

    Article  ADS  Google Scholar 

  • Nakagawa, T., Nishida, A., Saito, T.: 1989, Planar magnetic structures in the solar wind. J. Geophys. Res. Space Phys. 94(A9), 11761.

    Article  ADS  Google Scholar 

  • Nakamizo, A., Tanaka, T., Kubo, Y., Kamei, S., Shimazu, H., Shinagawa, H.: 2009, Development of the 3-D MHD model of the solar corona-solar wind combining system. J. Geophys. Res. Space Phys. 114(A7).

  • Neugebauer, M., Clay, D., Gosling, J.: 1993, The origins of planar magnetic structures in the solar wind. J. Geophys. Res. Space Phys. 98(A6), 9383.

    Article  ADS  Google Scholar 

  • Ngwira, C.M., Pulkkinen, A., Leila Mays, M., Kuznetsova, M.M., Galvin, A., Simunac, K., Baker, D.N., Li, X., Zheng, Y., Glocer, A.: 2013, Simulation of the 23 July 2012 extreme space weather event: what if this extremely rare CME was Earth directed? Space Weather 11(12), 671.

    Article  ADS  Google Scholar 

  • O’Brien, T., McPherron, R.: 2002, Seasonal and diurnal variation of Dst dynamics. J. Geophys. Res. Space Phys. 107, 1341. DOI.

    Article  ADS  Google Scholar 

  • Odstrcil, D., Riley, P., Zhao, X.: 2004, Numerical simulation of the 12 May 1997 interplanetary CME event. J. Geophys. Res. Space Phys. 109(A2).

  • Oliveira, D.M., Zesta, E., Hayakawa, H., Bhaskar, A.: 2020, Estimating satellite orbital drag during historical magnetic superstorms. Space Weather 18, e02472. DOI.

    Article  Google Scholar 

  • Owens, M.J., Merkin, V., Riley, P.: 2006, A kinematically distorted flux rope model for magnetic clouds. J. Geophys. Res. Space Phys. 111, A03104. DOI.

    Article  ADS  Google Scholar 

  • Palmerio, E., Kilpua, E.K., Savani, N.P.: 2016, Planar magnetic structures in coronal mass ejection-driven sheath regions. Ann. Geophys. 34, 313.

    Article  ADS  Google Scholar 

  • Raghav, A., Bhaskar, A., Lotekar, A., Vichare, G., Yadav, V.: 2014, Quantitative understanding of Forbush decrease drivers based on shock-only and CME-only models using global signature of February 14, 1978 event. J. Cosmol. Astropart. Phys. 2014, 074. DOI.

    Article  Google Scholar 

  • Raghav, A.N., Kule, A.: 2018a, Does the Alfvén wave disrupt the large-scale magnetic cloud structure? Mon. Not. Roy. Astron. Soc. 480(1), L6.

    Article  ADS  Google Scholar 

  • Raghav, A.N., Kule, A.: 2018b, The first in situ observation of torsional Alfvén waves during the interaction of large-scale magnetic clouds. Mon. Not. Roy. Astron. Soc. Lett. 476, L6. DOI.

    Article  ADS  Google Scholar 

  • Raghav, A.N., Shaikh, Z.I.: 2020, The pancaking of coronal mass ejections: an in situ attestation. Mon. Not. Roy. Astron. Soc. Lett. 493(1), L16.

    Article  ADS  Google Scholar 

  • Riley, P., Crooker, N.: 2004, Kinematic treatment of coronal mass ejection evolution in the solar wind. Astrophys. J. 600(2), 1035.

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J., Mikić, Z.: 2001, An empirically-driven global MHD model of the solar corona and inner heliosphere. J. Geophys. Res. Space Phys. 106(A8), 15889.

    Article  ADS  Google Scholar 

  • Savani, N., Owens, M., Rouillard, A., Forsyth, R., Kusano, K., Shiota, D., Kataoka, R., Jian, L., Bothmer, V.: 2011, Evolution of coronal mass ejection morphology with increasing heliocentric distance. II. In situ observations. Astrophys. J. 732(2), 117.

    Article  ADS  Google Scholar 

  • Schrijver, C.J., Siscoe, G.L.: 2010, Heliophysics: Space Storms and Radiation: Causes and Effects, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Shaikh, Z., Raghav, A., Bhaskar, A.: 2017, The presence of turbulent and ordered local structure within the ICME shock-sheath and its contribution to Forbush decrease. Astrophys. J. 844(2), 121.

    Article  ADS  Google Scholar 

  • Shaikh, Z.I., Raghav, A., Vichare, G.: 2019, Coexistence of a planar magnetic structure and an Alfvén wave in the shock-sheath of an interplanetary coronal mass ejection. Mon. Not. Roy. Astron. Soc. 490(2), 1638.

    Article  ADS  Google Scholar 

  • Shaikh, Z.I., Raghav, A.N.: 2022, Statistical plasma properties of the planar and nonplanar ICME magnetic clouds during solar cycles 23 and 24. Astrophys. J. 938(2), 146.

    Article  ADS  Google Scholar 

  • Shaikh, Z.I., Raghav, A.N., Vichare, G., Bhaskar, A., Mishra, W.: 2018, The identification of a planar magnetic structure within the ICME shock sheath and its influence on galactic cosmic-ray flux. Astrophys. J. 866(2), 118.

    Article  ADS  Google Scholar 

  • Shaikh, Z.I., Raghav, A., Vichare, G., Bhaskar, A., Mishra, W., Choraghe, K.: 2019, Concurrent effect of Alfvén waves and planar magnetic structure on geomagnetic storms. Mon. Not. Roy. Astron. Soc. 490(3), 3440. DOI.

    Article  ADS  Google Scholar 

  • Shaikh, Z.I., Raghav, A.N., Vichare, G., Bhaskar, A., Mishra, W.: 2020, Comparative statistical study of characteristics of plasma in planar and non-planar ICME sheaths during solar cycles 23 and 24. Mon. Not. Roy. Astron. Soc. 494(2), 2498.

    Article  ADS  Google Scholar 

  • Shiota, D., Kusano, K., Miyoshi, T., Shibata, K.: 2010, Magnetohydrodynamic modeling for a formation process of coronal mass ejections: interaction between an ejecting flux rope and an ambient field. Astrophys. J. 718(2), 1305.

    Article  ADS  Google Scholar 

  • Shprits, Y., Thorne, R., Horne, R., Glauert, S., Cartwright, M., Russell, C., Baker, D., Kanekal, S.: 2006, Acceleration mechanism responsible for the formation of the new radiation belt during the 2003 Halloween solar storm. Geophys. Res. Lett. 33, L05104. DOI.

    Article  ADS  Google Scholar 

  • Shue, J.-H., Song, P., Russell, C., Steinberg, J., Chao, J., Zastenker, G., Vaisberg, O., Kokubun, S., Singer, H., Detman, T., et al.: 1998, Magnetopause location under extreme solar wind conditions. J. Geophys. Res. Space Phys. 103(A8), 17691.

    Article  ADS  Google Scholar 

  • Sonnerup, B.U., Scheible, M.: 1998, Minimum and maximum variance analysis. In: Analysis Methods for Multi-Spacecraft Data, 185.

    Google Scholar 

  • Srivastava, N., Mathew, S.K., Louis, R.E., Wiegelmann, T.: 2009, Source region of the 18 November 2003 coronal mass ejection that led to the strongest magnetic storm of cycle 23. J. Geophys. Res. Space Phys. 114, A03107. DOI.

    Article  ADS  Google Scholar 

  • Temerin, M., Li, X.: 2002, A new model for the prediction of Dst on the basis of the solar wind. J. Geophys. Res. Space Phys. 107, 1472. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D.: 1997, The interplanetary causes of magnetic storms: a review. Geophys. Monogr. Ser. 98, 77. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Tang, F., Akasofu, S.I., Smith, E.J.: 1988, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978 – 1979). J. Geophys. Res. Space Phys. 93(A8), 8519.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Tang, F., Lee, Y.T.: 1992, Great magnetic storms. Geophys. Res. Lett. 19(1), 73.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L., Guarnieri, F.L., Gopalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., Mann, I., et al.: 2006, Corotating solar wind streams and recurrent geomagnetic activity: A review. J. Geophys. Res. Space Phys. 111, A07S01. DOI.

    Article  Google Scholar 

  • Vemareddy, P., Möstl, C., Amerstorfer, T., Mishra, W., Farrugia, C., Leitner, M.: 2016, Comparison of magnetic properties in a magnetic cloud and its solar source on 2013 April 11 – 14. Astrophys. J. 828(1), 12.

    Article  ADS  Google Scholar 

  • Welling, D.T., Love, J.J., Rigler, E.J., Oliveira, D.M., Komar, C.M., Morley, S.K.: 2021, Numerical simulations of the geospace response to the arrival of an idealized perfect interplanetary coronal mass ejection. Space Weather 19, e02489. DOI.

    Article  Google Scholar 

  • Wu, C.-C., Liou, K., Hutting, L., Wood, B.E.: 2022, Magnetohydrodynamic simulation of multiple coronal mass ejections: an effect of “pre-events”. Astrophys. J. 935(2), 67.

    Article  ADS  Google Scholar 

  • Zhang, J., Liemohn, M.W., Kozyra, J.U., Thomsen, M.F., Elliott, H.A., Weygand, J.M.: 2006, A statistical comparison of solar wind sources of moderate and intense geomagnetic storms at solar minimum and maximum. J. Geophys. Res. Space Phys. 111, A01104. DOI.

    Article  ADS  Google Scholar 

  • Zhang, J., Richardson, I., Webb, D., Gopalswamy, N., Huttunen, E., Kasper, J., Nitta, N., Poomvises, W., Thompson, B., Wu, C.-C., et al.: 2007, Solar and interplanetary sources of major geomagnetic storms (dst≤- 100 nt) during 1996–2005. J. Geophys. Res. Space Phys. 112, A10102. DOI.

    Article  ADS  Google Scholar 

  • Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. In: Coronal Mass Ejections, Springer, New York, 31.

    Chapter  Google Scholar 

Download references

Acknowledgment

We acknowledge use of NASA/GSFC’s Space Physics Data Facility’s OMNIWeb (or CDAWeb or ftp) service. We also thank the SOHO team for their remotely accessible data. This paper uses data from the Heliospheric Shock Database, generated and maintained at the University of Helsinki. We acknowledge SERB, India, since Anil Raghav is supported by SERB project reference file number CRG/2020/002314.

Author information

Authors and Affiliations

Authors

Contributions

AR proposed the project. ZS investigated the data in detail. AB, KG, OD, helped with the analysis. PV helps in the model analysis. AR, and ZS wrote the first draft after several discussions. AB, PV, and BD suggested corrections and improved the draft. Finally, all authors reviewed the manuscript.

Corresponding author

Correspondence to Anil Raghav.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghav, A., Shaikh, Z., Vemareddy, P. et al. The Possible Cause of Most Intense Geomagnetic Superstorm of the 21st Century on 20 November 2003. Sol Phys 298, 64 (2023). https://doi.org/10.1007/s11207-023-02157-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02157-y

Keywords

Navigation