Skip to main content
Log in

Study of Forbush Decrease Recovery Times by the Payload for Antimatter Matter Exploration and Light-Nuclei Astrophysics (PAMELA) Experiment

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A Forbush decrease (FD) is a sudden drop of cosmic-ray intensity arising as an effect of coronal mass ejection (CME) propagation in interplanetary space. The different physical properties of each CME cause variability in the FDs observed by scientific instruments. A comprehensive study of both phenomena is required to properly understand the processes involved in FDs. Most of the current studies in this field use experimental data obtained by ground-based apparatus that measure the flux of cosmic rays via their interaction with Earth’s atmosphere. Direct measurements in space of FDs are rather rare. In this work, we present the results obtained by the spacecraft-borne experiment Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA). The experiment took data from 15 June 2006 until January 2016. A series of FDs during the period 2006 – 2013 were studied. Only significant events with amplitude ≥ 10% for the proton flux \(R = 1.1\) – 2.9 GV were taken into account. The dependencies of the recovery times on the particle rigidity were obtained for FD events generated by halo-type CMEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data Availability

Data available within the article.

References

  • Adriani, O., Barbarino, G.C., Bazilevskaya, G.A., Bellotti, R., Boezio, M., Bogomolov, E.A., Bongi, M., Bonvicini, V., Bottai, S., Bruno, A., Cafagna, F., Campana, D., Carbone, R., Carlson, P., Casolino, M., Castellini, G., De Pascale, M.P., De Santis, C., De Simone, N., Di Felice, V., Formato, V., Galper, A.M., Giaccari, U., Karelin, A.V., Kheymits, M.D., Koldashov, S.V., Koldobskiy, S., Krut‘kov, S.Y., Kvashnin, A.N., Leonov, A., Malakhov, V., Marcelli, L., Martucci, M., Mayorov, A.G., Menn, W., Mikhailov, V.V., Mocchiutti, E., Monaco, A., Mori, N., Munini, R., Nikonov, N., Osteria, G., Papini, P., Pearce, M., Picozza, P., Pizzolotto, C., Ricci, M., Ricciarini, S.B., Rossetto, L., Sarkar, R., Simon, M., Sparvoli, R., Spillantini, P., Stozhkov, Y.I., Vacchi, A., Vannuccini, E., Vasilyev, G.I., Voronov, S.A., Wu, J., Yurkin, Y.T., Zampa, G., Zampa, N., Zverev, V.G.: 2014, The PAMELA mission: heralding a new era in precision cosmic ray physics. Phys. Rep. 544, 323. DOI. ADS.

    Article  ADS  Google Scholar 

  • Adriani, O., Barbarino, G.C., Bazilevskaya, G.A., Bellotti, R., Boezio, M., Bogomolov, E.A., Bongi, M., Bonvicini, V., Bottai, S., Bruno, A., Cafagna, F., Campana, D., Carlson, P., Casolino, M., Castellini, G., de Santis, C., di Felice, V., Galper, A.M., Karelin, A.V., Koldashov, S.V., Koldobskiy, S., Krutkov, S.Y., Kvashnin, A.N., Leonov, A., Malakhov, V., Marcelli, L., Martucci, M., Mayorov, A.G., Menn, W., Mergè, M., Mikhailov, V.V., Mocchiutti, E., Monaco, A., Munini, R., Mori, N., Osteria, G., Panico, B., Papini, P., Pearce, M., Picozza, P., Ricci, M., Ricciarini, S.B., Simon, M., Sparvoli, R., Spillantini, P., Stozhkov, Y.I., Vacchi, A., Vannuccini, E., Vasilyev, G., Voronov, S.A., Yurkin, Y.T., Zampa, G., Zampa, N.: 2017, Ten years of PAMELA in space. Riv. Nuovo Cimento 40, 473. DOI. ADS.

    Article  Google Scholar 

  • Alania, M., Wawrzynczak, A., Sdobnov, V., Kravtsova, M.: 2013, Temporal changes in the rigidity spectrum of Forbush decreases based on neutron monitor data. Solar Phys. 286, 561. DOI.

    Article  ADS  Google Scholar 

  • Alemanno, F., An, Q., Azzarello, P., Barbato, F.C.T., Bernardini, P., Bi, X., Cai, M., Casilli, E., Catanzani, E., Chang, J., Chen, D., Chen, J., Chen, Z., Cui, M., Cui, T., Cui, Y., Dai, H., Benedittis, A.D., Mitri, I.D., de Palma, F., Deliyergiyev, M., Santo, M.D., Ding, Q., Dong, T., Dong, Z., Donvito, G., Droz, D., Duan, J., Duan, K., D’Urso, D., Fan, R., Fan, Y., Fang, F., Fang, K., Feng, C., Feng, L., Fusco, P., Gao, M., Gargano, F., Gong, K., Gong, Y., Guo, D., Guo, J., Han, S., Hu, Y., Huang, G., Huang, X., Huang, Y., Ionica, M., Jiang, W., Kong, J., Kotenko, A., Kyratzis, D., Li, S., Lei, S., Li, W., Li, W., Li, X., Li, X., Liang, Y., Liu, C., Liu, H., Liu, J., Liu, S., Liu, Y., Loparco, F., Luo, C., Ma, M., Ma, P., Ma, T., Ma, X., Marsella, G., Mazziotta, M.N., Mo, D., Niu, X., Pan, X., Parenti, A., Peng, W., Peng, X., Perrina, C., Qiao, R., Rao, J., Ruina, A., Salinas, M., Shangguan, Z., Shen, W., Shen, Z., Shen, Z., Silveri, L., Song, J., Stolpovskiy, M., Su, H., Su, M., Sun, H., Sun, Z., Surdo, A., Teng, X., Tykhonov, A., Wang, J., Wang, L., Wang, S., Wang, S., Wang, X., Wang, Y., Wang, Y., Wang, Y., Wei, D., Wei, J., Wei, Y., Wu, D., Wu, J., Wu, L., Wu, S.S., Wu, X., Xia, Z., Xu, E., Xu, H., Xu, Z., Xu, Z., Xue, G., Xu, Z., Yang, H., Yang, P., Yang, Y., Yao, H.J., Yu, Y., Yuan, G., Yuan, Q., Yue, C., Zang, J., Zhang, S., Zhang, W., Zhang, Y., Zhang, Y., Zhang, Y., Zhang, Y., Zhang, Y., Zhang, Y., Zhang, Z., Zhang, Z., Zhao, C., Zhao, H., Zhao, X., Zhou, C., Zhu, Y., Chen, W., Feng, L., Luo, X., Zhu, C.: 2021, Observations of Forbush decreases of cosmic-ray electrons and positrons with the dark matter particle explorer. Astrophys. J. Lett. 920, L43. DOI.

    Article  ADS  Google Scholar 

  • Arunbabu, K., Antia, H., Dugad, S., Gupta, S., Hayashi, Y., Kawakami, S., Mohanty, P., Oshima, A., Subramanian, P.: 2015, How are Forbush decreases related to interplanetary magnetic field enhancements? Astron. Astrophys. 580, A41. DOI.

    Article  ADS  Google Scholar 

  • Belov, A., Eroshenko, E., Oleneva, V., Struminsky, A., Yanke, V.: 2001, What determines the magnitude of Forbush decreases? Adv. Space Res. 27, 625. DOI.

    Article  ADS  Google Scholar 

  • Cane, H.V.: 2000, Coronal mass ejections and Forbush decreases. Space Sci. Rev. 93, 55. DOI.

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I., Von Rosenvinge, T., Wibberenz, G.: 1994, Cosmic ray decreases and shock structure: a multispacecraft study. J. Geophys. Res. Space Phys. 99, 21429. DOI.

    Article  ADS  Google Scholar 

  • Dumbović, M., Vršnak, B., Čalogović, J., Župan, R.: 2012, Cosmic ray modulation by different types of solar wind disturbances. Astron. Astrophys. 538, A28. DOI.

    Article  ADS  Google Scholar 

  • Forbush, S.E.: 1937, On the effects in cosmic-ray intensity observed during the recent magnetic storm. Phys. Rev. 51, 1108. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N.: 2006, Properties of interplanetary coronal mass ejections. Space Sci. Rev. 124, 145. DOI.

    Article  ADS  Google Scholar 

  • Lagoida, I., Voronov, S., Mikhailov, V.: 2019, Forbush decreases in the fluxes of galactic cosmic rays, according to the Pamela experiment. Bull. Russ. Acad. Sci., Phys. 83, 971. DOI.

    Article  Google Scholar 

  • Lockwood, J.A.: 1971, Forbush decreases in the cosmic radiation. Space Sci. Rev. 12, 658. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lockwood, J., Webber, W., Jokipii, J.: 1986, Characteristic recovery times of Forbush-type decreases in the cosmic radiation: 1. Observations at Earth at different energies. J. Geophys. Res. Space Phys. 91, 2851. DOI.

    Article  ADS  Google Scholar 

  • Martucci, M., Munini, R., Boezio, M., Di Felice, V., Adriani, O., Barbarino, G.C., Bazilevskaya, G.A., Bellotti, R., Bongi, M., Bonvicini, V., Bottai, S., Bruno, A., Cafagna, F., Campana, D., Carlson, P., Casolino, M., Castellini, G., De Santis, C., Galper, A.M., Karelin, A.V., Koldashov, S.V., Koldobskiy, S., Krutkov, S.Y., Kvashnin, A.N., Leonov, A., Malakhov, V., Marcelli, L., Marcelli, N., Mayorov, A.G., Menn, W., Mergè, M., Mikhailov, V.V., Mocchiutti, E., Monaco, A., Mori, N., Osteria, G., Panico, B., Papini, P., Pearce, M., Picozza, P., Ricci, M., Ricciarini, S.B., Simon, M., Sparvoli, R., Spillantini, P., Stozhkov, Y.I., Vacchi, A., Vannuccini, E., Vasilyev, G., Voronov, S.A., Yurkin, Y.T., Zampa, G., Zampa, N., Potgieter, M.S., Raath, J.L.: 2018, Proton fluxes measured by the PAMELA experiment from the minimum to the maximum solar activity for solar cycle 24. Astrophys. J. Lett. 854, L2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Munini, R., Boezio, M., Bruno, A., Christian, E.C., de Nolfo, G.A., Di Felice, V., Martucci, M., Merge’, M., Richardson, I.G., Ryan, J.M., Stochaj, S., Adriani, O., Barbarino, G.C., Bazilevskaya, G.A., Bellotti, R., Bongi, M., Bonvicini, V., Bottai, S., Cafagna, F., Campana, D., Carlson, P., Casolino, M., Castellini, G., De Santis, C., Galper, A.M., Karelin, A.V., Koldashov, S.V., Koldobskiy, S., Krutkov, S.Y., Kvashnin, A.N., Leonov, A., Malakhov, V., Marcelli, L., Mayorov, A.G., Menn, W., Mikhailov, V.V., Mocchiutti, E., Monaco, A., Mori, N., Osteria, G., Panico, B., Papini, P., Pearce, M., Picozza, P., Ricci, M., Ricciarini, S.B., Simon, M., Sparvoli, R., Spillantini, P., Stozhkov, Y.I., Vacchi, A., Vannuccini, E., Vasilyev, G., Voronov, S.A., Yurkin, Y.T., Zampa, G., Zampa, N., Potgieter, M.S.: 2018, Evidence of energy and charge sign dependence of the recovery time for the 2006 December Forbush event measured by the PAMELA experiment. Astrophys. J. 853, 76. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Vourlidas, A., Raymond, J.C., Linton, M., Al-Haddad, N., Savani, N., Szabo, A., Hidalgo, M.A.: 2018, Understanding the internal magnetic field configurations of icmes using more than 20 years of wind observations. Solar Phys. 293, 1. DOI.

    Article  Google Scholar 

  • Penna, R.F., Quillen, A.C.: 2005, Decay of interplanetary coronal mass ejections and Forbush decrease recovery times. J. Geophys. Res. Space Phys. 110, A09S05. DOI.

    Article  ADS  Google Scholar 

  • Picozza, P., Galper, A.M., Castellini, G., Adriani, O., Altamura, F., Ambriola, M., Barbarino, G.C., Basili, A., Bazilevskaja, G.A., Bencardino, R., Boezio, M., Bogomolov, E.A., Bonechi, L., Bongi, M., Bongiorno, L., Bonvicini, V., Cafagna, F., Campana, D., Carlson, P., Casolino, M., de Marzo, C., de Pascale, M.P., de Rosa, G., Fedele, D., Hofverberg, P., Koldashov, S.V., Krutkov, S.Y., Kvashnin, A.N., Lund, J., Lundquist, J., Maksumov, O., Malvezzi, V., Marcelli, L., Menn, W., Mikhailov, V.V., Minori, M., Misin, S., Mocchiutti, E., Morselli, A., Nikonov, N.N., Orsi, S., Osteria, G., Papini, P., Pearce, M., Ricci, M., Ricciarini, S.B., Runtso, M.F., Russo, S., Simon, M., Sparvoli, R., Spillantini, P., Stozhkov, Y.I., Taddei, E., Vacchi, A., Vannuccini, E., Voronov, S.A., Yurkin, Y.T., Zampa, G., Zampa, N., Zverev, V.G.: 2007, PAMELA A payload for antimatter matter exploration and light-nuclei astrophysics. Astropart. Phys. 27, 296. DOI. ADS.

    Article  ADS  Google Scholar 

  • Richardson, I., Cane, H.: 1995, Regions of abnormally low proton temperature in the solar wind (1965 – 1991) and their association with ejecta. J. Geophys. Res. Space Phys. 100, 23397. DOI.

    Article  ADS  Google Scholar 

  • Usoskin, I., Braun, I., Gladysheva, O., Hörandel, J., Jämsén, T., Kovaltsov, G., Starodubtsev, S.: 2008, Forbush decreases of cosmic rays: energy dependence of the recovery phase. J. Geophys. Res. Space Phys. 113, A07102. DOI.

    Article  ADS  Google Scholar 

  • Wibberenz, G., Le Roux, J., Potgieter, M., Bieber, J.: 1998, Transient effects and disturbed conditions. Space Sci. Rev. 83, 309. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhao, L.-L., Zhang, H.: 2016, Transient galactic cosmic-ray modulation during solar cycle 24: a comparative study of two prominent Forbush decrease events. Astrophys. J. 827, 13. DOI.

    Article  ADS  Google Scholar 

  • Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31. DOI.

    Article  ADS  Google Scholar 

Download references

Funding

Event selection and data analysis have been performed with the support of the Russian Science Foundation, project no. 20-72-10170. Theoretical treatment of obtained results was supported by the Ministry of Science and Higher Education of the Russian Federation, project “Fundamental problems of cosmic rays and dark matter”, no. 0723-2020-0040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Lagoida.

Ethics declarations

Competing Interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagoida, I.A., Voronov, S.A., Mikhailov, V.V. et al. Study of Forbush Decrease Recovery Times by the Payload for Antimatter Matter Exploration and Light-Nuclei Astrophysics (PAMELA) Experiment. Sol Phys 298, 9 (2023). https://doi.org/10.1007/s11207-022-02097-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-02097-z

Keywords

Navigation