Skip to main content
Log in

Problems in Observation and Identification of Torsional Waves in the Lower Solar Atmosphere

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The registration of periodic variations of spectral line widths serves as the main method for observing torsional Alfvén waves. Theoretically, the method seems valid, yet it entails a number of caveats when applied to data. For instance, the amplitudes of these observations should vary with changes of the location on the disk and they should be associated with no intensity oscillations. We analyze extensive observational material of periodic non-thermal variations of line widths in coronal holes and facular regions in a number of spectral lines: H\(\alpha\), He  i 10830 Å, Ca ii 8542 Å, Ba ii 4554 Å. In most cases, we detected associated intensity oscillations at similar frequencies. Besides, we observed no centre-to-limb dependency. This calls for a discussion on the practical validity of the method and on the alternative explanations for the nature of non-thermal variations of spectral line widths. Based on our observations, we consider registering line profile broadening to be a necessary, but not sufficient, means for unambiguous identification of torsional Alfvén waves in the lower solar atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data Availability

The spectral ground-based data used in this work are available from the corresponding author upon request.

References

  • Alfvén, H.: 1947, Magneto hydrodynamic waves, and the heating of the solar corona. Mon. Not. Roy. Astron. Soc. 107, 211. DOI. ADS.

    Article  ADS  Google Scholar 

  • Antolin, P., Van Doorsselaere, T.: 2013, Line-of-sight geometrical and instrumental resolution effects on intensity perturbations by sausage modes. Astron. Astrophys. 555, A74. DOI. ADS.

    Article  Google Scholar 

  • Aschwanden, M.J.: 2019, New Millennium Solar Phys. 458. DOI. ADS.

    Book  Google Scholar 

  • Aschwanden, M.J., Wang, T.: 2020, Torsional Alfvénic oscillations discovered in the magnetic free energy during solar flares. Astrophys. J. 891, 99. DOI. ADS.

    Article  ADS  Google Scholar 

  • Banerjee, D., Pérez-Suárez, D., Doyle, J.G.: 2009, Signatures of Alfvén waves in the polar coronal holes as seen by EIS/Hinode. Astron. Astrophys. 501, L15. DOI. ADS.

    Article  ADS  Google Scholar 

  • Banerjee, D., Krishna Prasad, S., Pant, V., McLaughlin, J.A., Antolin, P., Magyar, N., Ofman, L., Tian, H., Van Doorsselaere, T., De Moortel, I., Wang, T.J.: 2021, Magnetohydrodynamic waves in open coronal structures. Space Sci. Rev. 217, 76. DOI. ADS.

    Article  ADS  Google Scholar 

  • Battaglia, A.F., Canivete Cuissa, J.R., Calvo, F., Bossart, A.A., Steiner, O.: 2021, The Alfvénic nature of chromospheric swirls. Astron. Astrophys. 649, A121. DOI. ADS.

    Article  ADS  Google Scholar 

  • Belov, S.A., Vasheghani Farahani, S., Molevich, N.E.: 2022, Propagating torsional Alfvén waves in thermally active solar plasma. Mon. Not. Roy. Astron. Soc. 515, 5151. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bemporad, A., Abbo, L.: 2012, Spectroscopic signature of Alfvén waves damping in a polar coronal hole up to 0.4 solar radii. Astrophys. J. 751, 110. DOI. ADS.

    Article  ADS  Google Scholar 

  • Billings, D.E.: 1959, Velocity fields in a coronal region with a possible hydromagnetic interpretation. Astrophys. J. 130, 215. DOI. ADS.

    Article  ADS  Google Scholar 

  • Boland, B.C., Engstrom, S.F.T., Jones, B.B., Wilson, R.: 1973, The heating of the solar corona. I. Observa- tion of ion energies in the transition zone. Astron. Astrophys. 22, 161. ADS.

    ADS  Google Scholar 

  • Boland, B.C., Dyer, E.P., Firth, J.G., Gabriel, A.H., Jones, B.B., Jordan, C., McWhirter, R.W.P., Monk, P., Turner, R.F.: 1975, Further measurements of emission line profiles in the solar ultraviolet spectrum. Mon. Not. Roy. Astron. Soc. 171, 697. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chae, J., Schühle, U., Lemaire, P.: 1998, SUMER measurements of nonthermal motions: constraints on coronal heating mechanisms. Astrophys. J. 505, 957. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Pontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Schrijver, C.J., Title, A.M., Shine, R.A., Tsuneta, S., Katsukawa, Y., Ichimoto, K., Suematsu, Y., Shimizu, T., Nagata, S.: 2007, Chromospheric Alfvénic waves strong enough to power the solar wind. Science 318, 1574. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Pontieu, B., McIntosh, S., Martinez-Sykora, J., Peter, H., Pereira, T.M.D.: 2015, Why is non-thermal line broadening of spectral lines in the lower transition region of the sun independent of spatial resolution? Astrophys. J. Lett. 799, L12. DOI. ADS.

    Article  ADS  Google Scholar 

  • Egan, T.F., Schneeberger, T.J.: 1979, Observations of coronal oscillations above an active region. Solar Phys. 64, 223. DOI. ADS.

    Article  ADS  Google Scholar 

  • Erdelyi, R., Doyle, J.G., Perez, M.E., Wilhelm, K.: 1998, Center-to-limb line width measurements of solar chromospheric, transition region and coronal lines. Astron. Astrophys. 337, 287. ADS.

    ADS  Google Scholar 

  • Gruszecki, M., Nakariakov, V.M., Van Doorsselaere, T.: 2012, Intensity variations associated with fast sausage modes. Astron. Astrophys. 543, A12. DOI. ADS.

    Article  Google Scholar 

  • Jess, D.B., Mathioudakis, M., Erdélyi, R., Crockett, P.J., Keenan, F.P., Christian, D.J.: 2009, Alfvén waves in the lower solar atmosphere. Science 323, 1582. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kobanov, N.I.: 2000, The properties of velocity oscillations in vicinities of sunspot penumbra. Solar Phys. 196, 129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kobanov, N.I., Chupin, S.A., Chelpanov, A.A.: 2017, On searching for observational manifestations of Alfvén waves in solar faculae. Astron. Lett. 43, 844. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kobanov, N.I., Chupin, S.A., Kolobov, D.Y.: 2016, Periodic variations of the Ba II 4554 Å and Ca II 8542 Å line profiles in coronal holes. Astron. Lett. 42, 55. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kobanov, N., Kolobov, D., Chelpanov, A.: 2015, Oscillations above sunspots and faculae: height stratification and relation to coronal fan structure. Solar Phys. 290, 363. DOI. ADS.

    Article  ADS  Google Scholar 

  • Maltby, P.: 1968, Effect of progressive Alfvén waves on the profiles of solar spectral lines. Solar Phys. 5, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mariska, J.T., Feldman, U., Doschek, G.A.: 1978, Measurements of extreme-ultraviolet emission-line profiles near the solar limb. Astrophys. J. 226, 698. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mariska, J.T., Feldman, U., Doschek, G.A.: 1979, Nonthermal broadening of extreme ultraviolet emission lines near the solar limb. Astron. Astrophys. 73, 361. ADS.

    ADS  Google Scholar 

  • McClements, K.G., Harrison, R.A., Alexander, D.: 1991, The detection of wave activity in the solar corona using ultraviolet spectra. Solar Phys. 131, 41. DOI. ADS.

    Article  ADS  Google Scholar 

  • McIntosh, S.W., De Pontieu, B., Tarbell, T.D.: 2008, Reappraising transition region line widths in light of recent Alfvén wave discoveries. Astrophys. J. Lett. 673, L219. DOI. ADS.

    Article  ADS  Google Scholar 

  • Merkulenko, V.E., Poliakov, V.I., Palamarchuk, L.E., Larionov, N.V.: 1983, Spectral / spatial analysis of wave motions in the region of the temperature minimum of the Sun’s atmosphere. Solar Phys. 82, 157. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mierla, M., Schwenn, R., Teriaca, L., Stenborg, G., Podlipnik, B.: 2008, Analysis of the Fe X and Fe XIV line width in the solar corona using LASCO-C1 spectral data. Astron. Astrophys. 480, 509. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shestov, S.V., Nakariakov, V.M., Ulyanov, A.S., Reva, A.A., Kuzin, S.V.: 2017, Nonlinear evolution of short-wavelength torsional Alfvén waves. Astrophys. J. 840, 64. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shilova, N.S.: 1966, The Ba II 4554 Å line and L\(\alpha\)-radiation intensity in the lower chromosphere. Soviet Astron. 10, 85. ADS.

    ADS  Google Scholar 

  • Srivastava, A.K., Shetye, J., Murawski, K., Doyle, J.G., Stangalini, M., Scullion, E., Ray, T., Wójcik, D.P., Dwivedi, B.N.: 2017, High-frequency torsional Alfvén waves as an energy source for coronal heating. Sci. Rep. 7, 43147. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vasheghani Farahani, S., Nakariakov, V.M., van Doorsselaere, T., Verwichte, E.: 2011, Nonlinear long-wavelength torsional Alfvén waves. Astron. Astrophys. 526, A80. DOI. ADS.

    Article  MATH  Google Scholar 

  • Verth, G., Erdélyi, R., Goossens, M.: 2010, Magnetoseismology: eigenmodes of torsional Alfvén waves in stratified solar waveguides. Astrophys. J. 714, 1637. DOI. ADS.

    Article  ADS  Google Scholar 

  • Verth, G., Goossens, M., He, J.-S.: 2011, Magnetoseismological determination of magnetic field and plasma density height variation in a solar spicule. Astrophys. J. Lett. 733, L15. DOI. ADS.

    Article  ADS  Google Scholar 

  • Verwichte, E., Aschwanden, M.J., Van Doorsselaere, T., Foullon, C., Nakariakov, V.M.: 2009, Seismology of a large solar coronal loop from EUVI/STEREO observations of its transverse oscillation. Astrophys. J. 698, 397. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wedemeyer-Böhm, S., Rouppe van der Voort, L.: 2009, Small-scale swirl events in the quiet Sun chromosphere. Astron. Astrophys. 507, L9. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zaqarashvili, T.V.: 2003, Observation of coronal loop torsional oscillation. Astron. Astrophys. 399, L15. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zubkova, A.V., Kobanov, N.I., Sklyar, A.A., Kostyk, R.I., Shchukina, N.G.: 2014, Periodic variations of the H \(\alpha\) profile width in the chromosphere of coronal holes as a possible indicator of Alfvén waves. Astron. Lett. 40, 222. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Funding

The selection and reduction of the data and scientific analysis were supported by the Russian Science Foundation under Grant 21-72-10139. The spectral data were obtained using the equipment of Center for Common Use ‘Angara’ http://ckp-rf.ru/ckp/3056/ with financial support from the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the data collection, compiled and reviewed the text of the manuscript.

Corresponding author

Correspondence to Andrei Chelpanov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chelpanov, A., Kobanov, N. Problems in Observation and Identification of Torsional Waves in the Lower Solar Atmosphere. Sol Phys 297, 154 (2022). https://doi.org/10.1007/s11207-022-02092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-02092-4

Keywords

Navigation