Skip to main content
Log in

Solar-Wind High-Speed Stream (HSS) Alfvén Wave Fluctuations at High Heliospheric Latitudes: Ulysses Observations During Two Solar-Cycle Minima

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We study Alfvén wave fluctuations in solar-wind high-speed streams (HSSs) at high heliolatitudes during the last two solar-cycle minima (SCM). Solar-wind plasma and interplanetary magnetic field (IMF) measured by Ulysses during four 50-day intervals in 1994, 1995, 2007, and 2008 were analyzed using wavelet and Fourier analyses, cross-correlation and kurtosis techniques. Intervals during 1994 and 1995 (2007 and 2008) correspond to the Ulysses polar passes through the southern and northern solar hemispheres, respectively, during the minimum between Cycles 22 and 23 or SCM22−23 (the minimum between Cycles 23 and 24 or SCM23−24). The solar-wind plasma density [\(N_{\mathrm{p}}\)], IMF magnitude [\(B_{ \mathrm{0}}\)], and IMF-component variances are found to be lower during SCM23−24 than during SCM22−23 by ≈ 20 – 30%. The cross-correlation between the plasma velocity and IMF vector components, an indicative of Alfvénicity, is smaller during SCM23−24 than during SCM22−23. The Alfvén wave periodicity exhibits a large range, from \(\approx 8\) hours to 10 days, with peak occurrences near 1 – 5 days during both minima. The statistical kurtosis analysis shows that the IMF distributions are mostly sub-Gaussian. Further, the Fourier power law analysis reveals a higher spectral power of transverse IMF components \(B_{\mathrm{t}}\) and \(B_{\mathrm{n}}\) than the radial field-aligned component \(B_{\mathrm{r}}\). The power spectrum shows a spectral break near 10−4 Hz, with its high-frequency portion following a −1.7 power law dependence (Kolmogorov spectrum), while the low-frequency portion shows an \(\approx -1.0\) power law index dependence. This low-frequency index is slightly higher during SCM22−23 (−0.65 to −0.87) than during SCM23−24 (−0.49 to −0.78). We conclude that while the Alfvénicity of the high-latitude HSSs does not vary substantially between the two minima, the amplitude of the Alfvén wave fluctuations is reduced during SCM23−24 compared to SCM22−23.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data Availability

The Ulysses data analyzed in this work are collected from NASA’s COHOWeb (omniweb.gsfc.nasa.gov/coho/).

References

  • Alfvén, H.: 1942, Existence of electromagnetic-hydrodynamic waves. Nature 150, 405. DOI.

    Article  ADS  Google Scholar 

  • Balogh, A., Erdõs, G.: 2013, The heliospheric magnetic field. Space Sci. Rev. 176, 177. DOI.

    Article  ADS  Google Scholar 

  • Balogh, A., Beek, T.J., Forsyth, R.J., Hedgecock, P.C., Marquedant, R.J., Smith, E.J., Southwood, D.J., Tsurutani, B.T.: 1992, The magnetic field investigation on the Ulysses mission: instrumentation and preliminary scientific results. Astron. Astrophys. Suppl. Ser. 92, 221.

    ADS  Google Scholar 

  • Balogh, A., Forsyth, R.J., Lucek, E.A., Horbury, T.S., Smith, E.J.: 1999, Heliospheric magnetic field polarity inversions at high heliographic latitudes. Geophys. Res. Lett. 26, 631. DOI.

    Article  ADS  Google Scholar 

  • Bame, S.J., McComas, D.J., Barraclough, B.L., Phillips, J.L., Sofaly, K.J., Chavez, J.C., Goldstein, B.E., Sakurai, R.K.: 1992, The Ulysses solar wind plasma experiment. Astron. Astrophys. Suppl. Ser. 92, 227.

    ADS  Google Scholar 

  • Belcher, J.W., Davis Jr., L.: 1971, Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534. DOI.

    Article  ADS  Google Scholar 

  • Belcher, J.W., Davis Jr., L., Smith, E.J.: 1969, Large-amplitude Alfvén waves in the interplanetary medium: Mariner 5. J. Geophys. Res. 74, 2302. DOI.

    Article  ADS  Google Scholar 

  • Bittencourt, J.A.: 2010, Fundamentals of Plasma Physics, Springer, Berlin, 679. ISBN: 9781441919304.

    Google Scholar 

  • Bolzan, M.J.A., Echer, E.: 2014, A multifractal approach applied to the magnetic field turbulence in Jupiter’s magnetosheath. Planet. Space Sci. 91, 77.

    Article  ADS  Google Scholar 

  • Bracewell, R.N.: 2014, The Fourier Transform and Its Applications, 3rd edn. McGraw-Hill Science/Engineering/Math, New York, USA. ISBN13 978-0073039381.

    MATH  Google Scholar 

  • Bruno, R., Bavassano, B., Villante, U.: 1985, Evidence for long period Alfvén waves in the inner solar system. J. Geophys. Res. 90, 4373. DOI.

    Article  ADS  Google Scholar 

  • Bruno, R., Carbone, V.: 2013, The solar wind as a turbulence laboratory. Living Rev. Solar Phys. 10, 2. DOI.

    Article  ADS  Google Scholar 

  • Bruno, R., Carbone, V., Vörös, Z., D’Amicis, R., Bavassano, B., Cattaneo, M.B., Mura, A., Milillo, A., Orsini, S., Veltri, P., Sorriso-Valvo, L., Zhang, T., Biernat, H., Rucker, H., Baumjohann, W., Jankovičová, D., Kovács, P.: 2009, Coordinated study on solar wind turbulence during the Venus-express, ACE and Ulysses alignment of August 2007. Earth Moon Planets 104, 101. DOI.

    Article  ADS  Google Scholar 

  • Chandran, B.D.G.: 2018, Parametric instability, inverse cascade and the 1/f range of solar-wind turbulence. J. Plasma Phys. 84, 1. DOI.

    Article  Google Scholar 

  • Chen, C.H.K., Bale, S.D., Bonnell, J.W., Borovikov, D., Bowen, T.A., Burgess, D., Case, A.W., Chandran, B.D.G., Dudok de Wit, T., Goetz, K., Harvey, P.R., Kasper, J.C., Klein, K.G., Korreck, K.E., Larson, D., Livi, R., MacDowall, R.J., Malaspina, D.M., Mallet, A., McManus, M.D., Moncuquet, M., Pulupa, M., Stevens, M.L., Whittlesey, P.: 2020, The evolution and role of solar wind turbulence in the inner heliosphere. Astrophys. J. Suppl. Ser. 246, 53. DOI.

    Article  ADS  Google Scholar 

  • Cranmer, S.R.: 2009, Coronal holes. Living Rev. Solar Phys. 6, 3. DOI.

    Article  ADS  Google Scholar 

  • D’Amicis, R., Matteini, L., Bruno, R.: 2019, On the slow solar wind with high Alfvénicity: from composition and microphysics to spectral properties. Mon. Not. Roy. Astron. Soc. 483, 4665. DOI.

    Article  ADS  Google Scholar 

  • Davis, J.C.: 2002, Statistics and Data Analysis in Geoglogy, Wiley, New York. ISBN 9780471172758.

    Google Scholar 

  • de Toma, G.: 2012, Polar magnetic fields and coronal holes during the recent solar minima. In: Proceedings IAU Symp. No. 286, 1.

    Google Scholar 

  • Denton, M.H., Borovsky, J.E.: 2012, Magnetosphere response to high-speed solar wind streams: a comparison of weak and strong driving and the importance of extended periods of fast solar wind. J. Geophys. Res. 117, A00L05. DOI.

    Article  ADS  Google Scholar 

  • Dunzlaff, P., Heber, B., Kopp, A., Rother, O., Muller-Mellin, R., Klassen, A., Gomez-Herrero, R., Wimmer-Schweingruber, R.: 2008, Observations of recurrent cosmic ray decreases during solar cycles 22 and 23. Ann. Geophys. 26, 3127. DOI.

    Article  ADS  Google Scholar 

  • Ebert, R.W., McComas, D.J., Elliott, H.A., Forsyth, R.J., Gosling, J.T.: 2009, Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: three polar orbits of observations. J. Geophys. Res. 114, A01109. DOI.

    Article  ADS  Google Scholar 

  • Echer, E., Bolzan, M..J.A.: 2016, A comparative study of solar wind and foreshock turbulence near Uranus orbit. Planet. Space Sci. 120, 70. DOI.

    Article  ADS  Google Scholar 

  • Echer, E., Bolzan, M.J.A., Franco, A.M.S.: 2020, Statistical analysis of solar wind parameter variation with heliospheric distance: Ulysses observations in the ecliptic plane. Adv. Space Res. 65, 2846. DOI.

    Article  ADS  Google Scholar 

  • Franco, A.M.S., Franz, M., Echer, E., Bolzan, M.J.A.: 2020, Wavelet analysis of low frequency plasma oscillations in the magnetosheath of Mars. Adv. Space Res. 65, 2090. DOI.

    Article  ADS  Google Scholar 

  • Franco, A.M.S., Hajra, R., Echer, E., Bolzan, M.J.A.: 2021, Seasonal features of geomagnetic activity: a study on the solar activity dependence. Ann. Geophys. 39, 929. DOI.

    Article  ADS  Google Scholar 

  • Franco, A.M.S., Echer, E., Bolzan, M.J.A., Franz, M.: 2022, Study of fluctuations in the Martian magnetosheath using a kurtosis technique: Mars Express observations. Earth Planet. Phys. 6, 28. DOI.

    Article  ADS  Google Scholar 

  • Gloeckler, G., Allegrini, F., Elliott, H.A., McComas, D.J., Schwadron, N.A., Geiss, J., von Steiger, R., Jones, G.H.: 2004, Cometary ions trapped in a coronal mass ejection. Astrophys. J. 604, L121. DOI.

    Article  ADS  Google Scholar 

  • Gosling, J.T., Bame, S.J., McComas, D.J., Phillips, J.L., Pizzo, V.J., Goldstein, B.E., Neugebauer, M.: 1993, Latitudinal variation of solar wind corotating stream interaction regions: Ulysses. Geophys. Res. Lett. 20, 2789. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R.: 2021, Weakest solar cycle of the space age: a study on solar wind–magnetosphere energy coupling and geomagnetic activity. Solar Phys. 296, 33. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R., Franco, A.M.S., Echer, E., Bolzan, M.J.A.: 2021, Long-term variations of the geomagnetic activity: a comparison between the strong and weak solar activity cycles and implications for the space climate. J. Geophys. Res. 126, e2020JA028695. DOI.

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: 2010, The solar cycle. Living Rev. Solar Phys. 7, 1. DOI.

    Article  ADS  Google Scholar 

  • Jimenez, J.: 1998, Turbulent velocity fluctuations need not be Gaussian. J. Fluid Mech. 376, 139. DOI.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Jones, G.H., Balogh, A., Horbury, T.S.: 2000, Identification of comet Hyakutake’s extremely long ion tail from magnetic field signatures. Nature 404, 574. DOI.

    Article  ADS  Google Scholar 

  • Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 29, 505. DOI.

    Article  ADS  Google Scholar 

  • McComas, D.J., Barraclough, B.L., Funsten, H.O., Gosling, J.T., Santiago-Muñoz, E., Skoug, R.M., Goldstein, B.E., Neugebauer, M., Riley, P., Balogh, A.: 2000, Solar wind observations over Ulysses’ first full polar orbit. J. Geophys. Res. 105, 10419. DOI.

    Article  ADS  Google Scholar 

  • McComas, D.J., Elliott, H.A., Gosling, J.T., Reisenfeld, D.B., Skoug, R.M., Goldstein, B.E., Neugebauer, M., Balogh, A.: 2002, Ulysses’ second fast-latitude scan: complexity near solar maximum and the reformation of polar coronal holes. Geophys. Res. Lett. 29, 4. DOI.

    Article  Google Scholar 

  • McComas, D.J., Elliott, H.A., Schwadron, N.A., Gosling, J.T., Skoug, R.M., Goldstein, B.E.: 2003, The three-dimensional solar wind around solar maximum. Geophys. Res. Lett. 30, 1517. DOI.

    Article  ADS  Google Scholar 

  • McComas, D.J., Ebert, R.W., Elliott, H.A., Goldstein, B.E., Gosling, J.T., Schwadron, N.A., Skoug, R.M.: 2008, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35, L18103. DOI.

    Article  ADS  Google Scholar 

  • Mouri, H., Takaoka, M., Hori, A., Kawashima, Y.: 2002, Probability density function of turbulent velocity fluctuations. Phys. Rev. E 65, 056304. DOI.

    Article  ADS  Google Scholar 

  • Neugebauer, M.: 1999, The three-dimensional solar wind at solar activity minimum. Rev. Geophys. 37, 107. DOI.

    Article  ADS  Google Scholar 

  • Neugebauer, M., Liewer, P.C., Smith, E.J., Skoug, R.M., Zurbuchen, T.H.: 2002, Sources of the solar wind at solar activity maximum. J. Geophys. Res. 107, SSH 13. DOI.

    Article  Google Scholar 

  • Neugebauer, M., Gloeckler, G., Gosling, J.T., Rees, A., Skoug, R., Goldstein, B.E., Armstrong, T.P., Combi, M.R., Mäkinen, T., McComas, D.J., von Steiger, R., Zurbuchen, T.H., Smith, E.J., Geiss, J., Lanzerotti, L.J.: 2007, Encounter of the Ulysses spacecraft with the ion tail of comet McNaught. Astrophys. J. 604, L121. DOI.

    Article  Google Scholar 

  • Phillips, J.L., Bame, S.J., Barnes, A., Barraclough, B.L., Feldman, W.C., Goldstein, B.E., Gosling, J.T., Hoogeveen, G.W., McComas, D.J., Neugebauer, M., Suess, S.T.: 1995, Ulysses solar wind plasma observations from pole to pole. Geophys. Res. Lett. 22, 3301. DOI.

    Article  ADS  Google Scholar 

  • Priest, E.R.: 1995, In: Kivelson, M.G., Russell, C.R. (eds.) The Sun and Its Magnetohydrodynamics, Cambridge University Press, Cambridge, 58.

    Google Scholar 

  • Reville, V., Tenerani, A., Velli, M.: 2018, Parametric decay and the origin of the low-frequency Alfvenic spectrum of the solar wind. Astrophys. J. 866, 38. DOI.

    Article  ADS  Google Scholar 

  • Richardson, I.G.: 2014, Identification of interplanetary coronal mass ejections at Ulysses using multiple solar wind signatures. Solar Phys. 289, 3843. DOI.

    Article  ADS  Google Scholar 

  • Roberts, D.A.: 2007, The evolution of the spectrum of velocity fluctuations in the solar wind. Eos Trans. AGU 88, SH31B.

    Google Scholar 

  • Schrijver, C.J., Liu, Y.: 2008, The global solar magnetic field through a full sunspot cycle: observations and model results. Solar Phys. 252, 19. DOI.

    Article  ADS  Google Scholar 

  • Schwenn, R.: 2006, Space weather the solar perspective. Living Rev. Solar Phys. 3, 2. DOI.

    Article  ADS  Google Scholar 

  • Sheeley, N.R., Harvey, J.W., Feldman, W.C.: 1976, Coronal holes, solar wind streams, and recurrent geomagnetic disturbances: 1973 – 1976. Solar Phys. 49, 271. DOI.

    Article  ADS  Google Scholar 

  • Shoda, M., Yokoyama, T., Suzuki, T.K.: 2018, Frequency-dependent Alfven-wave propagation in the solar wind onset and suppresion of parametric decay instability. Astrophys. J. 860, 17. DOI.

    Article  ADS  Google Scholar 

  • Smith, E.J., Balogh, A.: 2008, Decrease in heliospheric magnetic flux in this solar minimum: recent Ulysses magnetic field observations. Geophys. Res. Lett. 35, L22103. DOI.

    Article  ADS  Google Scholar 

  • Smith, E.J., Wenzel, K.P., Page, D.E.: 1992, Ulysses at Jupiter: an overview of the encounter science. Science 257, 1503. DOI.

    Article  ADS  Google Scholar 

  • Smith, E.J., Wolfe, J.H.: 1976, Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11. Geophys. Res. Lett. 3, 137. DOI.

    Article  ADS  Google Scholar 

  • Smith, E.J., Balogh, A., Neugebauer, M., McComas, D.: 1995, Ulysses observations of Alfvén waves in the southern and northern solar hemispheres. Geophys. Res. Lett. 22, 3381. DOI.

    Article  ADS  Google Scholar 

  • Smith, E.J., Balogh, A., Forsyth, R.J., McComas, D.J.: 2001, Ulysses in the south polar cap at solar maximum: heliospheric magnetic field. Geophys. Res. Lett. 28, 4159. DOI.

    Article  ADS  Google Scholar 

  • Souza, A.M., Echer, E., Bolzan, M.J.A., Hajra, R.: 2016, A study on the main periodicities in interplanetary magnetic field Bz component and geomagnetic AE index during HILDCAA events using wavelet analysis. J. Atmos. Solar-Terr. Phys. 149, 81. DOI.

    Article  ADS  Google Scholar 

  • Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Echer, E., Gonzalez, W.D.: 2011, The solar and interplanetary causes of the recent minimum in geomagnetic activity(MGA23): a combination of midlatitude coronal holes, low IMF Bz variances, low solar wind speeds and low solar magnetic fields. Ann. Geophys. 29, 839. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Ho, C.M., Arballo, J.K., Smith, E.J., Goldstein, B.E., Neugebauer, M., Balogh, A., Feldman, W.C.: 1996, Interplanetary discontinuities and Alfvén waves at high heliographic latitudes: Ulysses. J. Geophys. Res. 101, 11027. DOI.

    Article  ADS  Google Scholar 

  • Tulasi, R.S., Liu, C.H., Su, S.-Y.: 2010, Periodic solar wind forcing due to recurrent coronal holes during 1996 – 2009 and its impact on Earth’s geomagnetic and ionospheric properties during the extreme solar minimum. J. Geophys. Res. 115, A12340. DOI.

    Article  ADS  Google Scholar 

  • Verma, V.K., Joshi, G.C.: 1994, On the occurrence rate of high speed solar wind events. Solar Phys. 155, 401. DOI.

    Article  ADS  Google Scholar 

  • Virtanen, I.I., Mursula, K.: 2010, Asymmetry of solar polar fields and the southward shift of HCS observed by Ulysses. J. Geophys. Res. 115, A09110. DOI.

    Article  ADS  Google Scholar 

  • Wang, Y.M.: 2020, Small scale emergence, coronal hole heatin and flux expansion a hybrid solar wind model. Astrophys. J. 904, 199. DOI.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 2006, Sources of the solar wind at Ulysses during 1990 – 2006. Astrophys. J. 653, 708. DOI.

    Article  ADS  Google Scholar 

  • Zhang, M., McKibben, R.B., Lopate, C., Jokipii, J.R., Giacalone, J., Kallenrode, M.-B., Rassoul, H.K.: 2003, Ulysses observations of solar energetic particles from the 14 July 2000 event at high heliographic latitudes. J. Geophys. Res. 108, 1154. DOI.

    Article  Google Scholar 

Download references

Acknowledgments

E. Echer would like to thank Brazilian agencies for research grants: CNPq (contract no. PQ-302583/2015-7, PQ-301883/2019-0) and FAPESP (2018/21657-1). The work of R. Hajra is funded by the Science and Engineering Research Board (SERB, grant no. SB/S2/RJN-080/2018), a statutory body of the Department of Science and Technology (DST), Government of India through the Ramanujan Fellowship. The work of A. M. S. Franco is funded by the Brazilian CNPq agency (project no. PQ-300969/2020-1, PQ-301542/2021-0, PQ-300160/2021-6). The work of M. J. A. Bolzan was supported by CNPq agency (contract no. PQ-302330/2015-1, PQ-305692/2018-6) and FAPEG agency (contract no. 2012.1026.7000905). We thank the Brazilian Ministry of Science, Technology and Innovation and the Brazilian Space Agency as well.

Author information

Authors and Affiliations

Authors

Contributions

EE conceived and designed the analysis, and drafted the paper. Analyses were partially performed by EE, AMSF, ECJ and MJAB. RH contributed in interpreting the results. All authors took part in preparing the draft, and approved the final version of the paper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Echer, E., Franco, A.M.d.S., da Costa Junior, E. et al. Solar-Wind High-Speed Stream (HSS) Alfvén Wave Fluctuations at High Heliospheric Latitudes: Ulysses Observations During Two Solar-Cycle Minima. Sol Phys 297, 143 (2022). https://doi.org/10.1007/s11207-022-02070-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-02070-w

Keywords

Navigation