Skip to main content

Advertisement

Log in

Tomography of the Solar Corona with the Metis Coronagraph I: Predictive Simulations with Visible-Light Images

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The Solar Orbiter/Metis coronagraph records full-Sun visible-light polarized brightness (\(pB\)-) images of the solar corona. This work investigates the utility of a synoptic observational program of Metis for tomographic reconstruction of the three-dimensional (3D) distribution of the electron density of the global solar corona. During its lifetime, the mission’s distance to the Sun will range over \(\approx 0.3-1.0\,\mathrm{AU}\), while its solar latitude will span \(\approx \pm 33^{\circ}\). The limitations that this orbital complexity poses on tomographic reconstructions are explored in this work. Using the predicted orbital information of Solar Orbiter and 3D-MHD simulations of the solar corona using the Alfvén Wave Solar atmosphere Model (AWSoM), time series of synthetic Metis \(pB\)-images were computed and used as data to attempt tomographic reconstruction of the model. These numerical experiments were implemented for solar-minimum and solar-maximum conditions. In both cases, images were synthesized from three orbital segments, corresponding to extreme geometrical conditions of observation by Metis: aphelion, perihelion, and maximum solar latitude. The range of heights that can be reconstructed, the required data-gathering period, and the accuracy of the reconstruction, are discussed in detail for each case. As a general conclusion, a Metis synoptic observational program with a cadence of at least four images day−1 provides enough data to attempt tomographic reconstructions during the whole lifetime of the mission, a requirement well within the two- to three-hour cadence of the current synoptic program. This program will allow implementation of tomography experimenting with different values for the cadence of the time series of images used to feed reconstructions. Its cadence will also provide continuous opportunities to select images avoiding highly dynamic events, which compromise the accuracy of tomographic reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Materials Availability

The 3D electron-density of the AWSoM simulations, their tomographic reconstructions, their computational grid, an IDL script to read those products into memory, and the synthetic images used for tomography, can be downloaded from the following repository: doi.org/10.5281/zenodo.6916541.

References

  • Antonucci, E., Romoli, M., Andretta, V., Fineschi, S., Heinzel, P., Moses, J.D., Naletto, G., Nicolini, G., Spadaro, D., Teriaca, L., Berlicki, A., Capobianco, G., Crescenzio, G., Da Deppo, V., Focardi, M., Frassetto, F., Heerlein, K., Landini, F., Magli, E., Marco Malvezzi, A., Massone, G., Melich, R., Nicolosi, P., Noci, G., Pancrazzi, M., Pelizzo, M.G., Poletto, L., Sasso, C., Schühle, U., Solanki, S.K., Strachan, L., Susino, R., Tondello, G., Uslenghi, M., Woch, J., Abbo, L., Bemporad, A., Casti, M., Dolei, S., Grimani, C., Messerotti, M., Ricci, M., Straus, T., Telloni, D., Zuppella, P., Auchère, F., Bruno, R., Ciaravella, A., Corso, A.J., Alvarez Copano, M., Aznar Cuadrado, R., D’Amicis, R., Enge, R., Gravina, A., Jejčič, S., Lamy, P., Lanzafame, A., Meierdierks, T., Papagiannaki, I., Peter, H., Fernandez Rico, G., Giday Sertsu, M., Staub, J., Tsinganos, K., Velli, M., Ventura, R., Verroi, E., Vial, J.-C., Vives, S., Volpicelli, A., Werner, S., Zerr, A., Negri, B., Castronuovo, M., Gabrielli, A., Bertacin, R., Carpentiero, R., Natalucci, S., Marliani, F., Cesa, M., Laget, P., Morea, D., Pieraccini, S., Radaelli, P., Sandri, P., Sarra, P., Cesare, S., Del Forno, F., Massa, E., Montabone, M., Mottini, S., Quattropani, D., Schillaci, T., Boccardo, R., Brando, R., Pandi, A., Baietto, C., Bertone, R., Alvarez-Herrero, A., García Parejo, P., Cebollero, M., Amoruso, M., Centonze, V.: 2020, Metis: the Solar Orbiter visible light and ultraviolet coronal imager. Astron. Astrophys. 642, A10. DOI. ADS.

    Article  Google Scholar 

  • Arge, C.N., Henney, C.J., Hernandez, I.G., Toussaint, W.A., Koller, J., Godinez, H.C.: 2013, Modeling the corona and solar wind using ADAPT maps that include far-side observations. In: Zank, G.P., Borovsky, J., Bruno, R., Cirtain, J., Cranmer, S., Elliott, H., Giacalone, J., Gonzalez, W., Li, G., Marsch, E., Moebius, E., Pogorelov, N., Spann, J., Verkhoglyadova, O. (eds.) SOLAR WIND 13: Proc. Thirteenth International Solar Wind Conference CP-1539, AIP, Melville, 11. DOI. ADS.

    Chapter  Google Scholar 

  • Barbey, N., Guennou, C., Auchère, F.: 2013, TomograPy: a fast, instrument-independent, solar tomography software. Solar Phys. 283, 227. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bemporad, A., Giordano, S., Zangrilli, L., Frassati, F.: 2021, Combining white light and UV Lyman-\(\alpha \) coronagraphic images to determine the solar wind speed. The quick inversion method. Astron. Astrophys. 654, A58. DOI. ADS.

    Article  ADS  Google Scholar 

  • Butala, M.D., Hewett, R.J., Frazin, R.A., Kamalabadi, F.: 2010, Dynamic three-dimensional tomography of the Solar Corona. Solar Phys. 262, 495. DOI. ADS.

    Article  ADS  Google Scholar 

  • Frazin, R.A.: 2000, Tomography of the Solar Corona. I. A robust, regularized, positive estimation method. Astrophys. J. 530, 1026. DOI. ADS.

    Article  ADS  Google Scholar 

  • Frazin, R.A., Janzen, P.: 2002, Tomography of the Solar Corona. II. Robust, regularized, positive estimation of the three-dimensional electron density distribution from LASCO-C2 polarized white-light images. Astrophys. J. 570, 408. DOI. ADS.

    Article  ADS  Google Scholar 

  • Frazin, R.A., Vásquez, A.M., Kamalabadi, F.: 2009, Quantitative, three-dimensional analysis of the global corona with multi-spacecraft differential emission measure tomography. Astrophys. J. 701, 547. DOI. ADS.

    Article  ADS  Google Scholar 

  • Frazin, R.A., Vásquez, A.M., Kamalabadi, F., Park, H.: 2007, Three-dimensional tomographic analysis of a high-cadence LASCO-C2 polarized brightness sequence. Astrophys. J. Lett. 671, L201. DOI. ADS.

    Article  ADS  Google Scholar 

  • Frazin, R.A., Vásquez, A.M., Thompson, W.T., Hewett, R.J., Lamy, P., Llebaria, A., Vourlidas, A., Burkepile, J.: 2012, Intercomparison of the LASCO-C2, SECCHI-COR1, SECCHI-COR2, and Mk4 coronagraphs. Solar Phys. 280, 273. DOI. ADS.

    Article  ADS  Google Scholar 

  • García Marirrodriga, C., Pacros, A., Strandmoe, S., Arcioni, M., Arts, A., Ashcroft, C., Ayache, L., Bonnefous, Y., Brahimi, N., Cipriani, F., Damasio, C., De Jong, P., Déprez, G., Fahmy, S., Fels, R., Fiebrich, J., Hass, C., Hernández, C., Icardi, L., Junge, A., Kletzkine, P., Laget, P., Le Deuff, Y., Liebold, F., Lodiot, S., Marliani, F., Mascarello, M., Müller, D., Oganessian, A., Olivier, P., Palombo, E., Philippe, C., Ragnit, U., Ramachandran, J., Sánchez Pérez, J.M., Stienstra, M.M., Thürey, S., Urwin, A., Wirth, K., Zouganelis, I.: 2021, Solar Orbiter: mission and spacecraft design. Astron. Astrophys. 646, A121. DOI. ADS.

    Article  Google Scholar 

  • Lloveras, D.G., Vásquez, A.M., Nuevo, F.A., Mac Cormack, C., Sachdeva, N., Manchester, W., Van der Holst, B., Frazin, R.A.: 2020, Thermodynamic structure of the Solar Corona: tomographic reconstructions and MHD modeling. Solar Phys. 295, 76. DOI. ADS.

    Article  ADS  Google Scholar 

  • Minnaert, M.: 1930, On the continuous spectrum of the corona and its polarisation. With 3 figures. Z. Astrophys. 1, 209. ADS.

    ADS  MATH  Google Scholar 

  • Müller, D., St. Cyr, O.C., Zouganelis, I., Gilbert, H.R., Marsden, R., Nieves-Chinchilla, T., Antonucci, E., Auchère, F., Berghmans, D., Horbury, T.S., Howard, R.A., Krucker, S., Maksimovic, M., Owen, C.J., Rochus, P., Rodriguez-Pacheco, J., Romoli, M., Solanki, S.K., Bruno, R., Carlsson, M., Fludra, A., Harra, L., Hassler, D.M., Livi, S., Louarn, P., Peter, H., Schühle, U., Teriaca, L., del Toro Iniesta, J.C., Wimmer-Schweingruber, R.F., Marsch, E., Velli, M., De Groof, A., Walsh, A., Williams, D.: 2020, The Solar Orbiter mission. Science overview. Astron. Astrophys. 642, A1. DOI. ADS.

    Article  Google Scholar 

  • Romoli, M., Antonucci, E., Andretta, V., Capuano, G.E., Da Deppo, V., De Leo, Y., Downs, C., Fineschi, S., Heinzel, P., Landini, F., Liberatore, A., Naletto, G., Nicolini, G., Pancrazzi, M., Sasso, C., Spadaro, D., Susino, R., Telloni, D., Teriaca, L., Uslenghi, M., Wang, Y.M., Bemporad, A., Capobianco, G., Casti, M., Fabi, M., Frassati, F., Frassetto, F., Giordano, S., Grimani, C., Jerse, G., Magli, E., Massone, G., Messerotti, M., Moses, D., Pelizzo, M.G., Romano, P., Schühle, U., Slemer, A., Stangalini, M., Straus, T., Volpicelli, C.A., Zangrilli, L., Zuppella, P., Abbo, L., Auchére, F., Aznar Cuadrado, R., Berlicki, A., Bruno, R., Ciaravella, A., D’Amicis, R., Lamy, P., Lanzafame, A., Malvezzi, A.M., Nicolosi, P., Nisticò, G., Peter, H., Plainaki, C., Poletto, L., Reale, F., Solanki, S.K., Strachan, L., Tondello, G., Tsinganos, K., Velli, M., Ventura, R., Vial, J.C., Woch, J., Zimbardo, G.: 2021. First light observations of the solar wind in the outer corona with the Metis coronagraph. arXiv. ADS.

  • Sachdeva, N., Tóth, G., Manchester, W.B., van der Holst, B., Huang, Z., Sokolov, I.V., Zhao, L., Shidi, Q.A., Chen, Y., Gombosi, T.I., Henney, C.J., Lloveras, D.G., Vásquez, A.M.: 2021, Simulating solar maximum conditions using the Alfvén wave Solar Atmosphere Model (AWSoM). Astrophys. J. 923, 176. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sokolov, I.V., van der Holst, B., Oran, R., Downs, C., Roussev, I.I., Jin, M., Manchester, I., Ward, B., Evans, R.M., Gombosi, T.I.: 2013, Magnetohydrodynamic waves and coronal heating: unifying empirical and MHD turbulence models. Astrophys. J. 764, 23. DOI. ADS.

    Article  ADS  Google Scholar 

  • van de Hulst, H.C.: 1950, The electron density of the solar corona. Bull. Astron. Inst. Neth. 11, 135. ADS.

    ADS  Google Scholar 

  • van der Holst, B., Sokolov, I.V., Meng, X., Jin, M., Manchester, W.B. IV, Tóth, G., Gombosi, T.I.: 2014, Alfvén Wave Solar Model (AWSoM): coronal heating. Astrophys. J. 782, 81. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vásquez, A.M.: 2016, Seeing the solar corona in three dimensions. Adv. Space Res. 57, 1286. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vásquez, A.M., Frazin, R.A., Vourlidas, A., Manchester, W.B., van der Holst, B., Howard, R.A., Lamy, P.: 2019, Tomography of the Solar Corona with the wide-field imager for the Parker Solar Probe. Solar Phys. 294, 81. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vibert, D., Peillon, C., Lamy, P., Frazin, R.A., Wojak, J.: 2016, Time-dependent tomographic reconstruction of the solar corona. Astron. Comput. 17, 144. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the thorough revision of the anonymous reviewers, which led to significant improvement of the article both in terms of richness of content and clarity of exposition.

Solar Orbiter is a space mission of international collaboration between ESA and NASA, operated by ESA. Metis was built and operated with funding from the Italian Space Agency (ASI), under contracts to the National Institute of Astrophysics (INAF) and industrial partners. Metis was built with hardware contributions from Germany (Bundesministerium für Wirtschaft und Energie through DLR), from the Czech Republic (PRODEX), and from ESA.

This work utilizes data obtained by the Global Oscillation Network Group ( GONG ) program, managed by the National Solar Observatory, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation. The data were acquired by instruments operated by the Big Bear Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofísica de Canarias, and Cerro Tololo Interamerican Observatory.

Funding

A.M. Vásquez and F.A. Nuevo were partially supported by ANPCyT grant PICT-2016/0221 and CONICET grant PIP-11220200101169 to IAFE. F. Frassati is supported through the Metis program funded by the Italian Space Agency (ASI) under the contracts to the cofinancing National Institute of Astrophysics (INAF): Accordo ASI-INAF No. 2018-30-HH.0. N. Sachdeva and W.B. Manchester IV were supported by the NSF PRE-EVENTS grant No. 1663800 and the NSF SWQU grant No. PHY-2027555. High-performance computing support for these simulations was provided by Frontera (DOI) sponsored by NSF and the NASA supercomputing system Pleiades.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto M. Vásquez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vásquez, A.M., Nuevo, F.A., Frassati, F. et al. Tomography of the Solar Corona with the Metis Coronagraph I: Predictive Simulations with Visible-Light Images. Sol Phys 297, 120 (2022). https://doi.org/10.1007/s11207-022-02047-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-02047-9

Keywords

Navigation