Skip to main content
Log in

The New Composite Solar Flare Index from Solar Cycle 17 to Cycle 24 (1937 – 2020)

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The chromosphere is a highly dynamic outer plasma layer of the Sun. Its physical processes accounting for the variability are poorly understood. We reconstructed the solar chromospheric flare index (SFI) to study the solar chromospheric variability from 1937 to 2020. The new SFI database is a composite record of the Astronomical Institute Ondřejov Observatory of the Czech Academy of Sciences from 1937 – 1976 and the records of the Kandilli Observatory of Istanbul, Turkey from 1977 – 2020. The SFI records are available in daily, monthly, and yearly resolutions. We carried out the time-frequency analyses of the new 84-year long SFI records using the wavelet transform. We report the periodicities of 21.88 (Hale cycle), 10.94 (Schwabe cycle), 5.2 (quasi-quinquennial cycle), 3.5, 1.7, 1, 0.41 (or 149.7 days, Rieger cycle), 0.17 (62.1 days), 0.07 (25.9 days, solar rotational modulation) years. All these periodicities seem always present and persistent throughout the observational interval. Thus, we suggest that there is no reason to assume these solar periodicities are absent from other solar cycles. Time variations of the amplitude of each oscillation or periodicity were also studied using the inverse wavelet transform. We found that for the SFI the most active flare cycles over the record were Cycles 17, 19, and 21, while Cycles 20, 22, 23, and 24 were the weakest ones with Cycle 18 was intermediate in flare activity. This shows several differences to the equivalent relationships for solar activity implied by sunspot number records. Furthermore, this confirms that solar activity trends and variability in the chromosphere as captured by SFI are not necessarily the same as those of the Sun’s photosphere, as implied by the sunspot number activity records, for instance. We have also introduced a new signal/noise wavelet coherence metric to analyze two different chromospheric indices available (i.e. the SFI and the disk-integrated chromospheric Ca ii K activity indices) and to quantify the differences and similarities of the oscillations within the solar chromosphere. Our findings suggest the importance of carrying out additional co-analyses with other solar activity records to find physical inter-relations and connections between the different solar layers from the photosphere, the chromosphere to the corona.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data Availability

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Notes

  1. https://astronomi.boun.edu.tr/.

  2. https://paos.colorado.edu/research/wavelets/software.html.

  3. https://sites.google.com/site/aguiarconraria/joanasoares-wavelets/the-astoolbox.

  4. https://noc.ac.uk/business/marine-data-products/cross-wavelet-wavelet-coherence-toolbox-matlab.

  5. https://www.geofisica.unam.mx/radiacion-solar/estructura.html.

  6. https://solis.nso.edu/0/iss/.

  7. https://www.ngdc.noaa.gov/stp/CDROM/solar_variability.html.

References

  • Aguiar-Conraria, L., Azevedo, N., Soares, M.J.: 2008, Using wavelets to decompose the time-frequency effects of monetary policy. Physica A 387, 2863. DOI.

    Article  ADS  Google Scholar 

  • Alabiso, C.: 2015, A Primer on Hilbert Space Theory: Linear Spaces, Topological Spaces, Metric Spaces, Normed Spaces, and Topological Groups, Springer, Berlin. DOI.

    Book  MATH  Google Scholar 

  • Antalová, A.: 1994, Periodicities of the LDE-type flare occurrence (1969 – 1992). Adv. Space Res. 14, 721. DOI.

    Article  ADS  Google Scholar 

  • Ataç, T.: 1987, Time variation of the flare index during the 21st solar cycle. Astrophys. Space Sci. 135, 201. DOI.

    Article  ADS  Google Scholar 

  • Ataç, T., Özgüç, A.: 2006, Overview of the solar activity during solar cycle 23. Solar Phys. 2, 357. DOI.

    Article  Google Scholar 

  • Bayes, T.: 1763, An essay towards solving a problem in the doctrine of chances. Phil. Trans. Roy. Soc. London 53, 370. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Bazilevskaya, G., Broomhall, A.M., Elsworth, Y., Nakariakov, V.M.: 2014, A combined analysis of the observational aspects of the quasi-biennial oscillation in solar magnetic activity. Space Sci. Rev. 186, 359. DOI.

    Article  ADS  Google Scholar 

  • Bazilevskaya, G., Kalinin, M.S., Krainev, M.B., Makhmutov, V.S., Svirzhevskaya, A.K., Svirzhevsky, N.S., Stozhkov, Y.I.: 2016, On the relationship between quasi-biennial variations of solar activity, the heliospheric magnetic field and cosmic rays. Cosm. Res. 54, 171. DOI.

    Article  ADS  Google Scholar 

  • Benevolenskaya, E.E.: 2000, A mechanism of helicity variations on the Sun. Solar Phys. 191, 227. DOI.

    Article  ADS  Google Scholar 

  • Bertello, L., Pevtsov, A., Tlatov, A., Singh, J.: 2016, Correlation between sunspot number and Ca ii K emission index. Solar Phys. 291, 2967. DOI.

    Article  ADS  Google Scholar 

  • Bretagnon, P., Francou, G.: 1988, Planetary theories in rectangular and spherical variables-VSOP 87 solutions. Astron. Astrophys. 202, 309.

    ADS  MATH  Google Scholar 

  • Camporeale, E.: 2019, The challenge of machine learning in space weather: nowcasting and forecasting. Space Weather 17, 1166. DOI.

    Article  ADS  Google Scholar 

  • Cappellotto, L., Orgeira, M.J., Velasco Herrera, V.M., Cionco, R.G.: 2022, Multivariable statistical analysis between geomagnetic eld, climate, and orbital periodicities over the last 500 KYR, and their relationships during the last interglacial. Glob. Planet. Change 213, 1166. DOI.

    Article  Google Scholar 

  • Carrington, R.C.: 1859, Description of a Singular Appearance seen in the Sun on September 1, 1859. Mon. Not. Roy. Astron. Soc. 20, 13. DOI.

    Article  ADS  Google Scholar 

  • Carrington, R.C.: 1863, Observations of the Spots on the Sun from November 9, 1853 to March 24, 1861 (Made at Redhill) Williams and Norgate, London.

    Google Scholar 

  • Cionco, R.G.: 2012, Potential energy stored by planets and grand minima events in comparative magnetic minima: characterizing quiet times in the Sun and stars. In: Mandrini, C.H., Webb, D.F. (eds.) Proceedings of the International Astronomical Union, IAU Symposium 34, 410. DOI.

    Chapter  Google Scholar 

  • Cionco, R.G., Soon, W.: 2015, A phenomenological study of the timing of solar activity minima of the last millennium through a physical modeling of the Sun–Planets Interaction. New Astron. 34, 164. DOI.

    Article  ADS  Google Scholar 

  • Cionco, R.G., Pavlov, D.A.: 2018, Solar barycentric dynamics from a new solar-planetary ephemeris. Astron. Astrophys. 615, A153. DOI.

    Article  ADS  Google Scholar 

  • Cionco, R.G., Kudryavtsev, S.M., Soon, W.W.-H.: 2021, Possible origin of some periodicities detected in solar-terrestrial studies: Earth’s orbital movements. Earth Space Sci. 8, e2021EA001805. DOI.

    Article  ADS  Google Scholar 

  • Clark, D.H., Murdin, L.: 1979, The enigma of Stephen Gray astronomer and scientist (1666 – 1736). Vistas Astron. 23, 351. DOI.

    Article  ADS  MathSciNet  Google Scholar 

  • Clette, F., Svalgaard, L., Vaquero, J., Cliver, E.: 2014, Revisiting the sunspot number. A 400-year perspective on the solar cycle. Space Sci. Rev. 186, 35. DOI.

    Article  ADS  Google Scholar 

  • Connolly, R., Soon, W., Connolly, M., Baliunas, S., Berglund, J., Butler, C.J., Cionco, R.G., Elias, A.G., Federov, V.M., Harde, H., Henry, G.W., Hoyt, D.V., Humlum, O., Legates, D.R., Lüning, S., Scafetta, N., Solheim, J.-E., Szarka, L., van Loon, H., Velasco Herrera, V.M., Willson, R.C., Yan, H., Zhang, W.: 2021, How much has the Sun influenced northern hemisphere temperature trends? An ongoing debate. Res. Astron. Astrophys. 21, 131. DOI.

    Article  ADS  Google Scholar 

  • Courtillot, V., Lopes, F., Le Mouël, J.L.: 2021, On the prediction of solar cycles. Solar Phys. 296, 21. DOI.

    Article  ADS  Google Scholar 

  • Deng, H., Mei, Y., Wang, F.: 2020, Periodic variation and phase analysis of grouped solar flare with sunspot activity. Res. Astron. Astrophys. 20, 22. DOI.

    Article  ADS  Google Scholar 

  • Eddy, J.A.: 1974, A nineteenth-century coronal transient. Astron. Astrophys. 34, 235.

    ADS  Google Scholar 

  • Egeland, R., Soon, W., Baliunas, S., Hall, J.C., Pevtsov, A.A., Bertello, L.: 2017, The Mount Wilson Observatory S-index of the Sun. Astrophys. J. 835, 25. DOI.

    Article  ADS  Google Scholar 

  • Feynman, R.P., Leighton, R.B., Sands, M.: 1963, The Feynman Lectures on Physics, Mainly Mechanics, Radiation, and Heat I.

    MATH  Google Scholar 

  • Fletcher, S.T., Broomhall, A.M., Salabert, D., Basu, S., Chaplin, W.J., Elsworth, Y., Garcia, R.A.: 2010, A seismic signature of a second dynamo? Astrophys. J. 718, L19. DOI.

    Article  ADS  Google Scholar 

  • Fletcher, L., Dennis, D.R., Hudson, H.S., Krucker, S., Philips, K., Veronig, A., Battaglia, M., Bone, L., Caspi, A., Chen, Q., Gallagher, P., Grigis, P.T., Ji, H., Liu, W., Milligan, R.O., Temmer, M.: 2011, An observational overview of solar flares. Space Sci. Rev. 159, 19. DOI.

    Article  ADS  Google Scholar 

  • Fourier, J.B.J.: 1822, Théorie Analytique de la Chaleur, Libraires Pour Les Mathématiques, L’Arquitecture Hydraulique et la Marine 24, 569.

    MATH  Google Scholar 

  • Gilman, D.L., Fuglister, F.J., Mitchell, J.: 1963, On the power spectrum of “Red Noise”. J. Atmos. Sci. 20, 182. DOI.

    Article  ADS  Google Scholar 

  • Grinsted, A., Moore, J.C., Jevrejeva, S.: 2004, Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561. DOI.

    Article  ADS  Google Scholar 

  • Grossmann, A., Morlet, J.: 1984, Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15, 723. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Gurgenashvili, E., Zaqarashvili, T.V., Kukhianidze, V., Oliver, R., Ballester, J.L., Ramishvili, G., Shergelashvili, B., Hanslmeier, A., Poedts, S.: 2016, Rieger-type periodicity during solar cycles 14 – 24: estimation of dynamo magnetic field strength in the solar interior. Astrophys. J. 826, 55. DOI.

    Article  ADS  Google Scholar 

  • Hao, Q., Yang, K., Cheng, X., Guo, Y., Fang, C., Ding, M.D., Chen, P.F., Li, Z.: 2017, A circular white-light flare with impulsive and gradual white-light kernels. Nat. Commun. 8, 2202. DOI.

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: 2015, The solar cycle. Living Rev. Solar Phys. 7, 1. DOI.

    Article  ADS  Google Scholar 

  • Hodgson, R.: 1859, On a curious appearance seen in the Sun. Mon. Not. Roy. Astron. Soc. 20, 15. DOI.

    Article  ADS  Google Scholar 

  • Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, W., Larsen, R.M., Schou, J., Thompson, M., Toomore, J.: 2000, Dynamic variations at the base of the solar convection zone. Science 287, 2456. DOI.

    Article  ADS  Google Scholar 

  • Hoyt, D.V., Schatten, K.H.: 1993, A discussion of plausible solar irradiance variations, 1700 – 1992. J. Geophys. Res. 98, 18895. DOI.

    Article  ADS  Google Scholar 

  • Hudgins, L., Friehe, C.A., Mayer, M.E.: 1993, Wavelet transforms and atmospheric turbulence. Phys. Rev. Lett. 71, 3279. DOI.

    Article  ADS  Google Scholar 

  • Ibañez Bustos, R.V., Flores, M.G., Buccino, A.P., Saffe, C.E., Mauas, P.J.D.: 2017, Actividad cromosférica en estrellas frías. Bol. Asoc. Argent. Astron. 59, 22.

    ADS  Google Scholar 

  • Kane, R.P.: 2002a, Periodicities in the time series of solar coronal radio emissions and chromospheric UV emission lines. Solar Phys. 205, 351. DOI.

    Article  ADS  Google Scholar 

  • Kane, R.P.: 2002b, Variability in the periodicity of 27 days in solar indices. Solar Phys. 209, 207. DOI.

    Article  ADS  Google Scholar 

  • Kane, R.P., Vats, H.O., Sawant, H.S.: 2001, Short-term periodicities in the time series of solar radio emissions at different solar altitudes. Solar Phys. 201, 181. DOI.

    Article  ADS  Google Scholar 

  • Kiss, T.S., Gyenge, N., Erdélyi, R.: 2018, Quasi-biennial oscillations in the cross-correlation of properties of macrospicules. Adv. Space Res. 61, 611. DOI.

    Article  ADS  Google Scholar 

  • Kleczek, J.: 1952, Catalogue de L’Activité des Éruptions Chomosphériques (Premiré Parties) 22, Publ. Inst Centr Astron, Prague.

    Google Scholar 

  • Knoška, Š.: 1985, Distribution of flare activity on the solar disk in the years 1937 – 1976. Contrib. Astron. Obs. Skaln. Pleso 13, 217.

    ADS  Google Scholar 

  • Knoška, Š., Letfus, V.: 1966, Catalogue of Activity of the Solar Flare 1950-1965, unpublished. The authors, VMVH and WS, have a copy of this unpublished report from Stefan Knoška.

  • Knoška, Š., Petrášek, J.: 1984, Chromospheric flare activity in solar cycle 20. Contrib. Astron. Obs. Skaln. Pleso 12, 165.

    ADS  Google Scholar 

  • Kollath, Z., Olah, K.: 2009, Multiple and changing cycles of active stars: I. Methods of analysis and application to the solar cycles. Astron. Astrophys. 501, 695. DOI.

    Article  ADS  Google Scholar 

  • Krauss, S., Fichtinger, B., Lammer, H., Hausleitner, W., Kulikov, Yu.N., Ribas, I., Shematovich, V.I., Bisikalo, D., Lichtenegger, H.I.M., Zaqarashvili, T.V., Khodachenko, M.L., Hanslmeier, A.: 2012, Solar flares as proxy for the young Sun: satellite observed thermosphere response to an X17.2 flare of Earth’s upper atmosphere. Ann. Geophys. 30, 1129. DOI.

    Article  ADS  Google Scholar 

  • Kudryavtsev, S.M., Kudryavtseva, N.S.: 2009, Accurate analytical representation of Pluto modern ephemeris. Celest. Mech. Dyn. Astron. 105, 353. DOI.

    Article  ADS  MATH  Google Scholar 

  • Kusano, K., Iju, T., Bamba, Y., Inoue, S.: 2020, A physics-based method that can predict imminent large solar flares. Science 369, 587. DOI.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: 1988 In: The Classical Theory of Fields 2, Nauka, Moskow [in Russian].

    MATH  Google Scholar 

  • Le Mouël, J.L., Lopes, F., Courtillot, V.: 2019, A solar signature in many climate indices. J. Geophys. Res. 124, 2600. DOI.

    Article  Google Scholar 

  • Le Mouël, J.L., Lopes, F., Courtillot, V.: 2020, Characteristic time scales of decadal to centennial changes in global surface temperatures over the past 150 years. Earth Space Sci. 7, e2019EA000671. DOI.

    Article  Google Scholar 

  • Li, T., Sun, X., Hou, Y., Chen, A., Yang, S., Zhang, J.: 2022, A new magnetic parameter of active regions distinguishing large eruptive and confined solar flares. Astrophys. J. 926, L14. DOI.

    Article  ADS  Google Scholar 

  • Lin, J., Soon, W., Baliunas, S.L.: 2003, Theories of solar eruptions: a review. New Astron. Rev. 47, 53. DOI.

    Article  ADS  Google Scholar 

  • Link, F., Kleczek, J.: 1949, Influences Planétaires sur le Soleil IV. Bull. Astron. Inst. Czechoslov. 1, 69.

    ADS  Google Scholar 

  • Livingston, W.C.: 1994, Surrogates for total solar irradiance in the solar engine and its influence on terrestrial atmosphere and climate. In: Nesme-Ribes, E. (ed.) NATO ASI Series, 145. DOI.

    Chapter  Google Scholar 

  • McIntosh, P.S., Thompson, R.J., Venkatesan, D.: 1992, A 600-day periodicity in solar coronal holes. Nature 350, 322. DOI.

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Leamon, R.J., Krista, L.D., Title, A.M., Hudson, H.S., Riley, P., Harder, J.W., Kopp, G., Snow, M., Woods, T.N., Kasper, J.C., Stevens, M.L., Ulrich, R.K.: 2015, The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability. Nat. Commun. 6, 6491. DOI.

    Article  ADS  Google Scholar 

  • McNish, A.G.: 1937a, The atmosphere’s electrical fringe. News Serv. Bull. (Carnegie Inst. Wash.) 4, 151.

    Google Scholar 

  • McNish, A.G.: 1937b, On the ultraviolet light theory of magnetic storms. Phys. Rev. 52, 155. DOI.

    Article  ADS  Google Scholar 

  • Mendoza, B., Velasco Herrera, V.M.: 2011, On mid-term periodicities in sunspot groups and flare index. Solar Phys. 271, 169. DOI.

    Article  ADS  Google Scholar 

  • Mendoza, B., Velasco, V.M., Valdés-Galicia, J.F.: 2006, Mid-term periodicities in the solar magnetic flux. Solar Phys. 233, 319. DOI.

    Article  ADS  Google Scholar 

  • Metcalfe, T.S., Basu, S., Henry, T.J., Soderblom, D.R., Judge, P.G., Knölker, M., Mathur, S., Rempel, M.: 2010, Discovery of a 1.6 year magnetic activity cycle in the exoplanet host star HOROLOGII. Astrophys. J. 723, L213. DOI.

    Article  ADS  Google Scholar 

  • Miteva, R., Samwel, S.W.: 2022, M-class solar flares in solar cycles 23 and 24: properties and space weather relevance. Universe 8, 39. DOI.

    Article  ADS  Google Scholar 

  • Montet, B.T., Tovar, G., Foreman-Mackey, D.: 2017, Long-term photometric variability in Kepler full-frame images: magnetic cycles of sun-like stars. Astrophys. J. 851, 116. DOI.

    Article  ADS  Google Scholar 

  • Neidig, D.F., Cliver, E.W.: 1983, A Catalog of solar white-light flares (1859 – 1982), including their statistical properties and associated emissions. Air Force Geophysical Laboratory. Technical Report AFGL-TR-83-0257.

  • Obridko, V.N., Shelting, B.D.: 2007, Occurrence of the 1.3-year periodicity in the large-scale solar magnetic field for 8 solar cycles. Adv. Space Res. 40, 1006. DOI.

    Article  ADS  Google Scholar 

  • Olah, K., Kovari, Zs., Petrovay, K., Soon, W., Baliunas, S., Kollath, Z., Vida, K.: 2016, Magnetic cycles at different ages of stars. Astron. Astrophys. 590, A133. DOI.

    Article  ADS  Google Scholar 

  • Orgeira, M.J., Velasco Herrera, V.M., Cappellotto, L., Compagnucci, R.H.: 2022, Statistical analysis of the connection between geomagnetic field reversal, a supernova, and climate change during the Plio-Pleistocene transition. Int. J. Earth Sci. 111, 1357. DOI.

    Article  Google Scholar 

  • Özgüç, A., Ataç, T.: 1989, Periodic behavior of solar flare index during solar cycles 20 and 21. Solar Phys. 2, 357. DOI.

    Article  ADS  Google Scholar 

  • Özgüç, A., Ataç, T.: 1994, The 73-day periodicity of the flare index during the current solar cycle 22. Solar Phys. 150, 339. DOI.

    Article  ADS  Google Scholar 

  • Özgüç, A., Ataç, T.: 1996, Confirmation of the 25.5-day fundamental period of the Sun using the North-South asymmetry of the flare index. Solar Phys. 163, 183. DOI.

    Article  ADS  Google Scholar 

  • Özgüç, A., Ataç, T., Rybák, J.: 2002, Long-term periodicities in the flare index between the years 1966 – 2001. In: Proc. 10th European Solar Physics Meeting, ‘Solar Variability’, ESA SP-506, 709.

    Google Scholar 

  • Özgüç, A., Kilcik, A., Sarp, V., Yeşilyaprak, H., Pektaş, R.: 2021, Periodic variation of solar flare index for the last solar cycle (cycle 24). Adv. Astron. 8, 5391091. DOI.

    Article  ADS  Google Scholar 

  • Polygiannakis, J., Preka-Papadema, P., Moussas, X.: 2003, On signal-noise decomposition of time-series using the continuous wavelet transform: application to sunspot index. Mon. Not. Roy. Astron. Soc. 343, 725. DOI.

    Article  ADS  Google Scholar 

  • Richardson, R.S.: 1944, Solar flares versus bright chromospheric eruptions: a question of terminology. Publ. Astron. Soc. Pac. 56, 156. DOI.

    Article  ADS  Google Scholar 

  • Rieger, E., Share, G.H., Forrest, D.J., Kanbach, G., Reppin, C., Chupp, E.L.: 1984, A 154-day periodicity in the occurrence of hard solar flares? Nature 312, 623. DOI.

    Article  ADS  Google Scholar 

  • Salabert, D., Regulo, C., Gracia, R.A., Beck, P.G., Ballot, J., Creevey, O.L., Perez Hernandez, F., do Nascimento, J.-D., Corsaro, E., Egeland, R., Mathur, S., Metcalfe, T.S., Bigot, L., Ceillier, T., Palle, P.L.: 2016, Magnetic variability in the young solar analog KIC 10644253. Observations from the Kepler satellite and the HERMES spectrograph. Astron. Astrophys. 589, A118. DOI.

    Article  Google Scholar 

  • Sanz-Forcada, J., Stelzer, B., Metcalfe, T.S.: 2013, Horologi, the first coronal activity cycle in a young solar-like star. Astron. Astrophys. 553, L6. DOI.

    Article  ADS  Google Scholar 

  • Scafetta, N.: 2012, Does the Sun work as a nuclear fusion amplifier of planetary tidal forcing: a proposal for a physical mechanism based on the mass-luminosity relation. J. Atmos. Solar-Terr. Phys. 81 – 82, 27. DOI.

    Article  Google Scholar 

  • Schwabe, H.: 1844, Sonnen-Beobachtungen im Jahre 1843. Astron. Nachr. 21, 233. DOI.

    Article  ADS  Google Scholar 

  • Shibata, K., Magara, T.: 2011, Solar flares: magnetohydrodynamics processes. Living Rev. Solar Phys. 8, 6. DOI.

    Article  ADS  Google Scholar 

  • Silverman, S.M.: 1992, Secular variation of the aurora for the past 500 years. Rev. Geophys. 30, 333. DOI.

    Article  ADS  Google Scholar 

  • Song, Y., Tian, H., Zhu, X., Chen, Y., Zhang, M., Zhang, J.: 2020, A white-light flare powered by magnetic reconnection in the lower solar atmosphere. Astrophys. J. Lett. 893, L13. DOI.

    Article  ADS  Google Scholar 

  • Soon, W., Connolly, R., Connolly, M.: 2015, Re-evaluating the role of solar variability on northern hemisphere temperature trends since the 19th century. Earth-Sci. Rev. 150, 409. DOI.

    Article  ADS  Google Scholar 

  • Soon, W., Yaskell, S.H.: 2003, The Maunder Minimum and the Variable Sun-Earth Connection, World Scientific, Singapore.

    Book  Google Scholar 

  • Soon, W., Velasco Herrera, V.M., Cionco, R.G., Qiu, S., Baliunas, S., Egeland, R.: 2019, Covariations of chromospheric and photometric variability of the young Sun analogue HD 30495: evidence for and interpretation of mid-term periodicities. Mon. Not. Roy. Astron. Soc. 483, 2748. DOI.

    Article  ADS  Google Scholar 

  • Stefani, F., Giesecke, A., Weier, T.: 2019, A model of a tidally synchronized solar dynamo. Solar Phys. 294, 60. DOI.

    Article  ADS  Google Scholar 

  • Suykens, J., Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.: 2005, Least Squares Support Vector Machines, World Scientific, Singapore.

    MATH  Google Scholar 

  • Švestka, Z.: 1956, Several notes of the statistics of chromospheric flares. Bull. Astron. Inst. Czechoslov. 7, 9.

    ADS  Google Scholar 

  • Torrence, C., Compo, G.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61. DOI.

    Article  ADS  Google Scholar 

  • Torrence, C., Webster, P.J.: 1999, Interdecadal changes in the ENSO-monsoon system. J. Climate 12, 2679. DOI.

    Article  ADS  Google Scholar 

  • Usoskin, I., Solanki, S., Kovaltsov, G., Beer, J., Kromer, B.: 2006, Solar proton events in cosmogenic isotope data. Geophys. Res. Lett. 33, L08107. DOI.

    Article  ADS  Google Scholar 

  • Valdés-Galicia, J.F., Otaola, J., Pérez-Enríquez, R.: 1996, The cosmic-ray 1.68-year variation: a clue to understand the nature of the solar cycle? Solar Phys. 169, 409. DOI.

    Article  ADS  Google Scholar 

  • Valdés-Galicia, J.F., Velasco Herrera, V.M.: 2008, Variations of mid-term periodicities in solar activity physical phenomena. Adv. Space Res. 41, 297. DOI.

    Article  ADS  Google Scholar 

  • Vaquero, J.M., Vazquez, M., Sanchez Almeida, J.: 2017, Evidence of a white-light flare on 10 September 1886. Solar Phys. 292, 33. DOI.

    Article  ADS  Google Scholar 

  • Velasco Herrera, V., Mendoza, B., Velasco Herrera, G.: 2015, Reconstruction and prediction of the total solar irradiance: from the Medieval Warm Period to the 21st century. New Astron. 34, 221. DOI.

    Article  ADS  Google Scholar 

  • Velasco Herrera, V., Perez-Peraza, J.A.: 2010 Synchronization of the different solar layers. In: 38th COSPAR Scientific Assembly, 18 – 15 July 2010, Bremen, Germany, 3. ADS.

    Google Scholar 

  • Velasco Herrera, V.M., Soon, W., Legates, D.R.: 2021, Does Machine Learning reconstruct missing sunspots and forecast a new solar minimum? Adv. Space Res. 68, 1485. DOI.

    Article  ADS  Google Scholar 

  • Velasco Herrera, V.M., Soon, W., Velasco Herrera, G., Traversi, R., Horiuchi, K.: 2017, Generalization of the cross-wavelet function. New Astron. 56, 86. DOI.

    Article  ADS  Google Scholar 

  • Velasco Herrera, V.M., Perez-Peraza, J., Soon, W., Marquez-Adame, J.C.: 2018, The quasi-biennial oscillation of 1.7 years in ground level enhancement events. New Astron. 60, 7. DOI.

    Article  ADS  Google Scholar 

  • Velasco Herrera, V.M., Soon, W., Hoyt, D.V., Muraközy, J.: 2022a, Group sunspot numbers: a new reconstruction of sunspot activity variations from historical sunspot records using algorithms from Machine Learning. Solar Phys. 297, 8. DOI.

    Article  ADS  Google Scholar 

  • Velasco Herrera, V.M., Rossello, E.A., Orgeira, M.J., Arioni, L., Soon, W., Velasco, G., la Rosique-de, C.L., Zúñiga, E., Vera, C.: 2022b, Long-term forecasting of strong earthquakes in North America, South America, Japan, Southern China and Northern India with Machine Learning. Front. Earth Sci. 10, 905792. DOI.

    Article  ADS  Google Scholar 

  • Wan, M., Zeng, S.-G., Zheng, S., Lin, G.-H.: 2020, Chinese sunspot drawings and their digitization – (III) quasi-biennial oscillation of the hand-drawn sunspot records. Res. Astron. Astrophys. 20, 190. DOI.

    Article  ADS  Google Scholar 

  • Wheatland, M.S., Litvinenko, Y.E.: 2001, Energy balance in the flaring solar corona. Astron. J. 557, 332. DOI.

    Article  Google Scholar 

  • Wiener, N.: 1930, Generalized harmonic analysis. Acta Math. 55, 117. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, J., Temmer, M., Gopalswamy, N., Malandraki, O., Nitta, N.V., Patsourakos, S., Shen, F., Vrsnak, B., Wang, Y., Webb, D., Desai, M.I., Dissauer, K., Dresing, N., Dumbovic, M., Feng, X., Heinemann, S.G., Laurenza, M., Lugaz, N., Zhuang, B.: 2021, Earth-affecting solar transients: a review of progresses in solar cycle 24. Prog. Earth Planet. Sci. 8, 56. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all colleagues, especially Tamer Ataç and Atila Özgüç of the Kandilli Observatory, who helped to make this work possible. We thank the reviewer for the careful reading and constructive improvements to the early versions of our manuscript.

RGC acknowledges the support of the grant PID-5265TC (2019-2022) of National Technological University of Argentina. V.M. Velasco Herrera acknowledges the support from CONACyT-180148 and the support from PAPIIT-IT102420 grants. W. Soon’s work was partially supported by the SAO grants with proposals ID: 000000000003010-V101 and 000000000004254-V101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Manuel Velasco Herrera.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Š. Knoška formerly of the Astronomical Institute of the Slovak Academy of Sciences, Tatranská Lomnica, 059 60, Slovak Republic.

R. Connolly is an independent scientist, Dublin, Ireland.

M. Connolly is an independent scientist, Dublin, Ireland.

IDASC (CNR), now merged into IMM (CNR).

Giovanni Pietro Gregori is retired.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velasco Herrera, V.M., Soon, W., Knoška, Š. et al. The New Composite Solar Flare Index from Solar Cycle 17 to Cycle 24 (1937 – 2020). Sol Phys 297, 108 (2022). https://doi.org/10.1007/s11207-022-02035-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-02035-z

Keywords

Navigation