Aschwanden, M.J.: 2004a, Physics of the Solar Corona. An Introduction, Reidel, Dordrecht. ADS.
Google Scholar
Aschwanden, M.J.: 2004b, The role of observed MHD oscillations and waves for coronal heating. In: Walsh, R.W., Ireland, J., Danesy, D., Fleck, B. (eds.) SOHO 15 Workshop – Coronal Heating, SP-575. ESA, Noordwijk, 97. ADS.
Google Scholar
Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: 1999, Coronal loop oscillations observed with the transition region and coronal explorer. Astrophys. J. 520, 880. DOI. ADS.
ADS
Article
Google Scholar
Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: The radio and plasma wave investigation on the wind spacecraft. Space Sci. Rev. 71, 231. DOI. ADS.
ADS
Article
Google Scholar
Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADS.
ADS
Article
Google Scholar
Chandra, R., Chen, P.F., Joshi, R., Joshi, B., Schmieder, B.: 2018, Observations of two successive EUV waves and their mode conversion. Astrophys. J. 863, 101. DOI. ADS.
ADS
Article
Google Scholar
Chen, P.F.: 2006, The relation between EIT waves and solar flares. Astrophys. J. Lett. 641, L153. DOI. ADS.
ADS
Article
Google Scholar
Chen, P.F., Fang, C., Shibata, K.: 2005, A full view of EIT waves. Astrophys. J. 622, 1202. DOI. ADS.
ADS
Article
Google Scholar
Chen, P.F., Wu, Y.: 2011, First evidence of coexisting EIT wave and coronal Moreton wave from SDO/AIA observations. Astrophys. J. Lett. 732, L20. DOI. ADS.
ADS
Article
Google Scholar
Chen, P.F., Wu, S.T., Shibata, K., Fang, C.: 2002, Evidence of EIT and Moreton waves in numerical simulations. Astrophys. J. Lett. 572, L99. DOI. ADS.
ADS
Article
Google Scholar
Cheng, X., Zhang, J., Olmedo, O., Vourlidas, A., Ding, M.D., Liu, Y.: 2012, Investigation of the formation and separation of an extreme-ultraviolet wave from the expansion of a coronal mass ejection. Astrophys. J. Lett. 745, L5. DOI. ADS.
ADS
Article
Google Scholar
Cliver, E.W., Laurenza, M., Storini, M., Thompson, B.J.: 2005, On the origins of solar EIT waves. Astrophys. J. 631, 604. DOI. ADS.
ADS
Article
Google Scholar
Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291. DOI. ADS.
ADS
Article
Google Scholar
Delannée, C., Artzner, G., Schmieder, B., Parenti, S.: 2014, Time evolution of the altitude of an observed coronal wave. Solar Phys. 289, 2565. DOI. ADS.
ADS
Article
Google Scholar
Eselevich, V.G., Eselevich, M.V., Zimovets, I.V.: 2019, Observations of a flare-generated blast wave in a pseudo coronal mass ejection event. Solar Phys. 294, 73. DOI. ADS.
ADS
Article
Google Scholar
Gao, G.-N., Wang, M., Lin, J., Wu, N., Tan, C.-M., Kliem, B., Su, Y.: 2014, Radio observations of the fine structure inside a post-CME current sheet. Res. Astron. Astrophys. 14, 843. DOI. ADS.
ADS
Article
Google Scholar
Goddard, C.R., Nisticò, G., Nakariakov, V.M., Zimovets, I.V., White, S.M.: 2016, Observation of quasi-periodic solar radio bursts associated with propagating fast-mode waves. Astron. Astrophys. 594, A96. DOI. ADS.
ADS
Article
Google Scholar
Gopalswamy, N., Yashiro, S., Temmer, M., Davila, J., Thompson, W.T., Jones, S., McAteer, R.T.J., Wuelser, J.-P., Freeland, S., Howard, R.A.: 2009, EUV wave reflection from a coronal hole. Astrophys. J. Lett. 691, L123. DOI. ADS.
ADS
Article
Google Scholar
Guo, Y., Ding, M.D., Chen, P.F.: 2015, Slow patchy extreme-ultraviolet propagating fronts associated with fast coronal magneto-acoustic waves in solar eruptions. Astrophys. J. Suppl. 219, 36. DOI. ADS.
ADS
Article
Google Scholar
Hu, H., Liu, Y.D., Zhu, B., Peter, H., He, W., Wang, R., Yang, Z.: 2019, Effects of coronal density and magnetic field distributions on a global solar EUV wave. Astrophys. J. 878, 106. DOI. ADS.
ADS
Article
Google Scholar
Hudson, H.S., Khan, J.I., Lemen, J.R., Nitta, N.V., Uchida, Y.: 2003, Soft X-ray observation of a large-scale coronal wave and its exciter. Solar Phys. 212, 121. DOI. ADS.
ADS
Article
Google Scholar
Karpen, J.T., Antiochos, S.K., DeVore, C.R.: 2012, The mechanisms for the onset and explosive eruption of coronal mass ejections and eruptive flares. Astrophys. J. 760, 81. DOI. ADS.
ADS
Article
Google Scholar
Khan, J.I., Aurass, H.: 2002, X-ray observations of a large-scale solar coronal shock wave. Astron. Astrophys. 383, 1018. DOI. ADS.
ADS
Article
Google Scholar
Kliem, B., Török, T.: 2006, Torus instability. Phys. Rev. L 96, 255002. DOI. ADS.
ADS
Article
Google Scholar
Kolotkov, D.Y., Nakariakov, V.M., Kontar, E.P.: 2018, Origin of the modulation of the radio emission from the solar corona by a fast magnetoacoustic wave. Astrophys. J. 861, 33. DOI. ADS.
ADS
Article
Google Scholar
Kolotkov, D.Y., Nakariakov, V.M., Moss, G., Shellard, P.: 2021, Fast magnetoacoustic wave trains: From tadpoles to boomerangs. Mon. Not. Roy. Astron. Soc. 505, 3505. DOI. ADS.
ADS
Article
Google Scholar
Kozarev, K.A., Korreck, K.E., Lobzin, V.V., Weber, M.A., Schwadron, N.A.: 2011, Off-limb solar coronal wavefronts from SDO/AIA extreme-ultraviolet observations—implications for particle production. Astrophys. J. Lett. 733, L25. DOI. ADS.
ADS
Article
Google Scholar
Krause, G., Cécere, M., Zurbriggen, E., Costa, A., Francile, C., Elaskar, S.: 2018, Are CMEs capable of producing Moreton waves? A case study: The 2006 December 6 event. Mon. Not. Roy. Astron. Soc. 474, 770. DOI. ADS.
ADS
Article
Google Scholar
Kumar, P., Innes, D.E.: 2013, Multiwavelength observations of an eruptive flare: Evidence for blast waves and break-out. Solar Phys. 288, 255. DOI. ADS.
ADS
Article
Google Scholar
Kumar, P., Innes, D.E.: 2015, Partial reflection and trapping of a fast-mode wave in solar coronal arcade loops. Astrophys. J. Lett. 803, L23. DOI. ADS.
ADS
Article
Google Scholar
Kumar, P., Innes, D.E., Cho, K.-S.: 2016, Flare-generated shock wave propagation through solar coronal arcade loops and an associated type II radio burst. Astrophys. J. 828, 28. DOI. ADS.
ADS
Article
Google Scholar
Kumar, P., Manoharan, P.K.: 2013, Eruption of a plasma blob, associated M-class flare, and large-scale extreme-ultraviolet wave observed by SDO. Astron. Astrophys. 553, A109. DOI. ADS.
ADS
Article
Google Scholar
Kumar, P., Nakariakov, V.M., Cho, K.-S.: 2017, Quasi-periodic radio bursts associated with fast-mode waves near a magnetic null point. Astrophys. J. 844, 149. DOI. ADS.
ADS
Article
Google Scholar
Kumar, P., Cho, K.-S., Chen, P.F., Bong, S.-C., Park, S.-H.: 2013, Multiwavelength study of a solar eruption from AR NOAA 11112: II. Large-scale coronal wave and loop oscillation. Solar Phys. 282, 523. DOI. ADS.
ADS
Article
Google Scholar
Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS.
ADS
Article
Google Scholar
Li, D., Ning, Z.J., Zhang, Q.M.: 2015, Imaging and spectral observations of quasi-periodic pulsations in a solar flare. Astrophys. J. 807, 72. DOI. ADS.
ADS
Article
Google Scholar
Li, T., Zhang, J., Yang, S., Liu, W.: 2012, SDO/AIA observations of secondary waves generated by interaction of the 2011 June 7 global EUV wave with solar coronal structures. Astrophys. J. 746, 13. DOI. ADS.
ADS
Article
Google Scholar
Li, D., Zhang, Q.M., Huang, Y., Ning, Z.J., Su, Y.N.: 2017, Quasi-periodic pulsations with periods that change depending on whether the pulsations have thermal or nonthermal components. Astron. Astrophys. 597, L4. DOI. ADS.
ADS
Article
Google Scholar
Li, B., Guo, M.-Z., Yu, H., Chen, S.-X.: 2018, Impulsively generated wave trains in coronal structures. II. Effects of transverse structuring on sausage waves in pressurelesss slabs. Astrophys. J. 855, 53. DOI. ADS.
ADS
Article
Google Scholar
Li, B., Antolin, P., Guo, M.-Z., Kuznetsov, A.A., Pascoe, D.J., Van Doorsselaere, T., Vasheghani Farahani, S.: 2020, Magnetohydrodynamic fast sausage waves in the solar corona. Space Sci. Rev. 216, 136. DOI. ADS.
ADS
Article
Google Scholar
Liu, W., Ofman, L.: 2014, Advances in observing various coronal EUV waves in the SDO era and their seismological applications (invited review). Solar Phys. 289, 3233. DOI. ADS.
ADS
Article
Google Scholar
Liu, Y.D., Zhu, B., Zhao, X.: 2019, Geometry, kinematics, and heliospheric impact of a large CME-driven shock in 2017 September. Astrophys. J. 871, 8. DOI. ADS.
ADS
Article
Google Scholar
Liu, W., Title, A.M., Zhao, J., Ofman, L., Schrijver, C.J., Aschwanden, M.J., De Pontieu, B., Tarbell, T.D.: 2011, Direct imaging of quasi-periodic fast propagating waves of ∼2000 km s−1 in the low solar corona by the solar dynamics observatory atmospheric imaging assembly. Astrophys. J. Lett. 736, L13. DOI. ADS.
ADS
Article
Google Scholar
Liu, W., Ofman, L., Nitta, N.V., Aschwanden, M.J., Schrijver, C.J., Title, A.M., Tarbell, T.D.: 2012, Quasi-periodic fast-mode wave trains within a global EUV wave and sequential transverse oscillations detected by SDO/AIA. Astrophys. J. 753, 52. DOI. ADS.
ADS
Article
Google Scholar
Liu, R., Liu, C., Xu, Y., Liu, W., Kliem, B., Wang, H.: 2013, Observation of a Moreton wave and wave-filament interactions associated with the renowned X9 flare on 1990 May 24. Astrophys. J. 773, 166. DOI. ADS.
ADS
Article
Google Scholar
Liu, W., Ofman, L., Broder, B., Karlický, M., Downs, C.: 2016, Quasi-periodic fast-mode magnetosonic wave trains within coronal waveguides associated with flares and CMEs. CP-1720 AIP, Melville, 040010. DOI. ADS.
Book
Google Scholar
Liu, W., Jin, M., Downs, C., Ofman, L., Cheung, M.C.M., Nitta, N.V.: 2018, A truly global extreme ultraviolet wave from the SOL2017-09-10 X8.2+ solar flare-coronal mass ejection. Astrophys. J. Lett. 864, L24. DOI. ADS.
ADS
Article
Google Scholar
Liu, R., Wang, Y., Lee, J., Shen, C.: 2019, Impacts of EUV wavefronts on coronal structures in homologous coronal mass ejections. Astrophys. J. 870, 15. DOI. ADS.
ADS
Article
Google Scholar
Long, D.M., DeLuca, E.E., Gallagher, P.T.: 2011, The wave properties of coronal bright fronts observed using SDO/AIA. Astrophys. J. Lett. 741, L21. DOI. ADS.
ADS
Article
Google Scholar
Long, D.M., Bloomfield, D.S., Chen, P.F., Downs, C., Gallagher, P.T., Kwon, R.-Y., Vanninathan, K., Veronig, A.M., Vourlidas, A., Vršnak, B., Warmuth, A., Žic, T.: 2017, Understanding the physical nature of coronal “EIT waves”. Solar Phys. 292, 7. DOI. ADS.
ADS
Article
Google Scholar
Ma, S., Raymond, J.C., Golub, L., Lin, J., Chen, H., Grigis, P., Testa, P., Long, D.: 2011, Observations and interpretation of a low coronal shock wave observed in the EUV by the SDO/AIA. Astrophys. J. 738, 160. DOI. ADS.
ADS
Article
Google Scholar
Magdalenić, J., Vršnak, B., Pohjolainen, S., Temmer, M., Aurass, H., Lehtinen, N.J.: 2008, A flare-generated shock during a coronal mass ejection on 24 December 1996. Solar Phys. 253, 305. DOI. ADS.
ADS
Article
Google Scholar
Magdalenić, J., Marqué, C., Zhukov, A.N., Vršnak, B., Veronig, A.: 2012, Flare-generated type II burst without associated coronal mass ejection. Astrophys. J. 746, 152. DOI. ADS.
ADS
Article
Google Scholar
Mann, G.: 1995, Simple magnetohydrodynamic waves. J. Plasma Phys. 53, 109. DOI. ADS.
ADS
Article
Google Scholar
Mészárosová, H., Karlický, M., Rybák, J.: 2011, Magnetoacoustic wave trains in the 11 July 2005 radio event with fiber bursts. Solar Phys. 273, 393. DOI. ADS.
ADS
Article
Google Scholar
Mészárosová, H., Karlický, M., Rybák, J., Jiřička, K.: 2009, Tadpoles in wavelet spectra of a solar decimetric radio burst. Astrophys. J. Lett. 697, L108. DOI. ADS.
ADS
Article
Google Scholar
Miao, Y.H., Liu, Y., Shen, Y.D., Li, H.B., Abidin, Z.Z., Elmhamdi, A., Kordi, A.S.: 2019, A quasi-periodic propagating wave and extreme-ultraviolet waves excited simultaneously in a solar eruption event. Astrophys. J. Lett. 871, L2. DOI. ADS.
ADS
Article
Google Scholar
Miao, Y., Li, D., Yuan, D., Jiang, C., Elmhamdi, A., Zhao, M., Anfinogentov, S.: 2021, Diagnosing a solar flaring core with bidirectional quasi-periodic fast propagating magnetoacoustic waves. Astrophys. J. Lett. 908, L37. DOI. ADS.
ADS
Article
Google Scholar
Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: 2001, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552, 833. DOI. ADS.
ADS
Article
Google Scholar
Moreton, G.E., Ramsey, H.E.: 1960, Recent observations of dynamical phenomena associated with solar flares. Pub. Astron. Soc. Pac. 72, 357. DOI. ADS.
ADS
Article
Google Scholar
Moses, D., Clette, F., Delaboudinière, J.-P., Artzner, G.E., Bougnet, M., Brunaud, J., Carabetian, C., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Newmark, J., Thompson, B., Maucherat, A., Portier-Fozzani, F., Berghmans, D., Cugnon, P., van Dessel, E.L., Gabryl, J.R.: 1997, EIT observations of the extreme ultraviolet Sun. Solar Phys. 175, 571. DOI. ADS.
ADS
Article
Google Scholar
Nakariakov, V.M., Verwichte, E.: 2005, Coronal waves and oscillations. Liv. Rev. Solar Phys. 2, 3. DOI. ADS.
ADS
Article
Google Scholar
Nakariakov, V.M., Arber, T.D., Ault, C.E., Katsiyannis, A.C., Williams, D.R., Keenan, F.P.: 2004, Time signatures of impulsively generated coronal fast wave trains. Mon. Not. Roy. Astron. Soc. 349, 705. DOI. ADS.
ADS
Article
Google Scholar
Neupert, W.M.: 1968, Comparison of solar X-ray line emission with microwave emission during flares. Astrophys. J. Lett. 153, L59. DOI. ADS.
ADS
Article
Google Scholar
Nisticò, G., Pascoe, D.J., Nakariakov, V.M.: 2014, Observation of a high-quality quasi-periodic rapidly propagating wave train using SDO/AIA. Astron. Astrophys. 569, A12. DOI. ADS.
ADS
Article
Google Scholar
Ofman, L.: 2007, Three-dimensional MHD model of wave activity in a coronal active region. Astrophys. J. 655, 1134. DOI. ADS.
ADS
Article
Google Scholar
Ofman, L., Thompson, B.J.: 2002, Interaction of EIT waves with coronal active regions. Astrophys. J. 574, 440. DOI. ADS.
ADS
Article
Google Scholar
Ofman, L., Liu, W., Title, A., Aschwanden, M.: 2011, Modeling super-fast magnetosonic waves observed by SDO in active region funnels. Astrophys. J. Lett. 740, L33. DOI. ADS.
ADS
Article
Google Scholar
Olmedo, O., Vourlidas, A., Zhang, J., Cheng, X.: 2012, Secondary waves and/or the “reflection” from and “transmission” through a coronal hole of an extreme ultraviolet wave associated with the 2011 February 15 X2.2 flare observed with SDO/AIA and STEREO/EUVI. Astrophys. J. 756, 143. DOI. ADS.
ADS
Article
Google Scholar
Pascoe, D.J., Nakariakov, V.M., Kupriyanova, E.G.: 2013, Fast magnetoacoustic wave trains in magnetic funnels of the solar corona. Astron. Astrophys. 560, A97. DOI. ADS.
ADS
Article
Google Scholar
Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI. ADS.
ADS
Article
Google Scholar
Priest, E.R.: 1982, Solar Magneto-Hydrodynamics, Reidel, Dordrecht. ADS.
Book
Google Scholar
Qu, Z.N., Jiang, L.Q., Chen, S.L.: 2017, Observations of a fast-mode magnetosonic wave propagating along a curving coronal loop on 2011 November 11. Astrophys. J. 851, 41. DOI. ADS.
ADS
Article
Google Scholar
Reid, H.A.S., Ratcliffe, H.: 2014, A review of solar type III radio bursts. Res. Astron. Astrophys. 14, 773. DOI. ADS.
ADS
Article
Google Scholar
Roberts, B., Edwin, P.M., Benz, A.O.: 1983, Fast pulsations in the solar corona. Nature 305, 688. DOI. ADS.
ADS
Article
Google Scholar
Roberts, B., Edwin, P.M., Benz, A.O.: 1984, On coronal oscillations. Astrophys. J. 279, 857. DOI. ADS.
ADS
Article
Google Scholar
Schrijver, C.J., Aschwanden, M.J., Title, A.M.: 2002, Transverse oscillations in coronal loops observed with TRACE I. An overview of events, movies, and a discussion of common properties and required conditions. Solar Phys. 206, 69. DOI. ADS.
ADS
Article
Google Scholar
Schrijver, C.J., De Rosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165. DOI. ADS.
ADS
Article
Google Scholar
Shen, Y.: 2021, Observation and modelling of solar jets. Proc. Roy. Soc. London Ser. A 477, 217. DOI. ADS.
Article
Google Scholar
Shen, Y., Liu, Y.: 2012a, Evidence for the wave nature of an extreme ultraviolet wave observed by the atmospheric imaging assembly on board the solar dynamics observatory. Astrophys. J. 754, 7. DOI. ADS.
ADS
Article
Google Scholar
Shen, Y., Liu, Y.: 2012b, Observational study of the quasi-periodic fast-propagating magnetosonic waves and the associated flare on 2011 May 30. Astrophys. J. 753, 53. DOI. ADS.
ADS
Article
Google Scholar
Shen, Y., Liu, Y.: 2012c, Simultaneous observations of a large-scale wave event in the solar atmosphere: From photosphere to corona. Astrophys. J. Lett. 752, L23. DOI. ADS.
ADS
Article
Google Scholar
Shen, Y., Song, T., Liu, Y.: 2018, Dispersively formed quasi-periodic fast magnetosonic wavefronts due to the eruption of a nearby mini-filament. Mon. Not. Roy. Astron. Soc. 477, L6. DOI. ADS.
ADS
Article
Google Scholar
Shen, Y.-D., Liu, Y., Su, J.-T., Li, H., Zhang, X.-F., Tian, Z.-J., Zhao, R.-J., Elmhamdi, A.: 2013a, Observations of a quasi-periodic, fast-propagating magnetosonic wave in multiple wavelengths and its interaction with other magnetic structures. Solar Phys. 288, 585. DOI. ADS.
ADS
Article
Google Scholar
Shen, Y., Liu, Y., Su, J., Li, H., Zhao, R., Tian, Z., Ichimoto, K., Shibata, K.: 2013b, Diffraction, refraction, and reflection of an extreme-ultraviolet wave observed during its interactions with remote active regions. Astrophys. J. Lett. 773, L33. DOI. ADS.
ADS
Article
Google Scholar
Shen, Y., Ichimoto, K., Ishii, T.T., Tian, Z., Zhao, R., Shibata, K.: 2014, A chain of winking (oscillating) filaments triggered by an invisible extreme-ultraviolet wave. Astrophys. J. 786, 151. DOI. ADS.
ADS
Article
Google Scholar
Shen, Y., Liu, Y.D., Su, J., Qu, Z., Tian, Z.: 2017a, On a solar blowout jet: Driving mechanism and the formation of cool and hot components. Astrophys. J. 851, 67. DOI. ADS.
ADS
Article
Google Scholar
Shen, Y., Liu, Y., Tian, Z., Qu, Z.: 2017b, On a small-scale EUV wave: The driving mechanism and the associated oscillating filament. Astrophys. J. 851, 101. DOI. ADS.
ADS
Article
Google Scholar
Shen, Y., Liu, Y., Liu, Y.D., Su, J., Tang, Z., Miao, Y.: 2018a, Homologous large-amplitude nonlinear fast-mode magnetosonic waves driven by recurrent coronal jets. Astrophys. J. 861, 105. DOI. ADS.
ADS
Article
Google Scholar
Shen, Y., Liu, Y., Song, T., Tian, Z.: 2018b, A quasi-periodic fast-propagating magnetosonic wave associated with the eruption of a magnetic flux rope. Astrophys. J. 853, 1. DOI. ADS.
ADS
Article
Google Scholar
Shen, Y., Tang, Z., Li, H., Liu, Y.: 2018c, Coronal EUV, QFP, and kink waves simultaneously launched during the course of jet-loop interaction. Mon. Not. Roy. Astron. Soc. 480, L63. DOI. ADS.
ADS
Article
Google Scholar
Shen, Y., Tang, Z., Miao, Y., Su, J., Liu, Y.: 2018d, EUV waves driven by the sudden expansion of transequatorial loops caused by coronal jets. Astrophys. J. Lett. 860, L8. DOI. ADS.
ADS
Article
Google Scholar
Shen, Y., Chen, P.F., Liu, Y.D., Shibata, K., Tang, Z., Liu, Y.: 2019, First unambiguous imaging of large-scale quasi-periodic extreme-ultraviolet wave or shock. Astrophys. J. 873, 22. DOI. ADS.
ADS
Article
Google Scholar
Shen, Y., Li, B., Chen, P., Zhou, X., Liu, Y.: 2020, Research progress on coronal extreme ultraviolet waves. Chin. Sci. Bull. 65, 3909. DOI.
Article
Google Scholar
Shen, Y., Zhou, X., Duan, Y., Tang, Z., Zhou, C., Tan, S.: 2021, Quasi-periodic fast-mode propagating wave trains in the Corona: A review. Solar Phys., submitted.
Shestov, S., Nakariakov, V.M., Kuzin, S.: 2015, Fast magnetoacoustic wave trains of sausage symmetry in cylindrical waveguides of the solar corona. Astrophys. J. 814, 135. DOI. ADS.
ADS
Article
Google Scholar
Su, W., Cheng, X., Ding, M.D., Chen, P.F., Sun, J.Q.: 2015, A type II radio burst without a coronal mass ejection. Astrophys. J. 804, 88. DOI. ADS.
ADS
Article
Google Scholar
Takasao, S., Shibata, K.: 2016, Above-the-loop-top oscillation and quasi-periodic coronal wave generation in solar flares. Astrophys. J. 823, 150. DOI. ADS.
ADS
Article
Google Scholar
Thompson, B.J., Myers, D.C.: 2009, A catalog of coronal “EIT wave” transients. Astrophys. J. Suppl. 183, 225. DOI. ADS.
ADS
Article
Google Scholar
Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St. Cyr, O.C., Michels, D.J.: 1998, SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett. 25, 2465. DOI. ADS.
ADS
Article
Google Scholar
Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteor. Soc. 79, 61. DOI. ADS.
ADS
Article
Google Scholar
Tripathi, D., Isobe, H., Jain, R.: 2009, Large amplitude oscillations in prominences. Space Sci. Rev. 149, 283. DOI. ADS.
ADS
Article
Google Scholar
Uchida, Y.: 1968, Propagation of hydromagnetic disturbances in the solar corona and Moreton’s wave phenomenon. Solar Phys. 4, 30. DOI. ADS.
ADS
Article
Google Scholar
Uchida, Y.: 1970, Diagnosis of coronal magnetic structure by flare-associated hydromagnetic disturbances. Pub. Astron. Soc. Japan 22, 341. ADS.
ADS
Google Scholar
Van Doorsselaere, T., Gijsen, S.E., Andries, J., Verth, G.: 2014, Energy propagation by transverse waves in multiple flux tube systems using filling factors. Astrophys. J. 795, 18. DOI. ADS.
ADS
Article
Google Scholar
Veronig, A.M., Muhr, N., Kienreich, I.W., Temmer, M., Vršnak, B.: 2010, First observations of a dome-shaped large-scale coronal extreme-ultraviolet wave. Astrophys. J. Lett. 716, L57. DOI. ADS.
ADS
Article
Google Scholar
Vršnak, B., Cliver, E.W.: 2008, Origin of coronal shock waves. Invited review. Solar Phys. 253, 215. DOI. ADS.
ADS
Article
Google Scholar
Wang, J., Yan, X., Kong, D., Xue, Z., Yang, L., Li, Q.: 2020, A small-scale filament eruption inducing a Moreton wave, an EUV wave, and a coronal mass ejection. Astrophys. J. 894, 30. DOI. ADS.
ADS
Article
Google Scholar
Warmuth, A.: 2007, Large-Scale Waves and Shocks in the Solar Corona, Lecture Notes in Physics 725, Springer, Berlin, 107. ADS.
Google Scholar
Warmuth, A.: 2010, Large-scale waves in the solar corona: The continuing debate. Adv. Space Res. 45, 527. DOI. ADS.
ADS
Article
Google Scholar
Warmuth, A.: 2015, Large-scale globally propagating coronal waves. Liv. Rev. Solar Phys. 12, 3. DOI. ADS.
ADS
Article
Google Scholar
Warmuth, A., Vršnak, B., Magdalenić, J., Hanslmeier, A., Otruba, W.: 2004, A multiwavelength study of solar flare waves. II. Perturbation characteristics and physical interpretation. Astron. Astrophys. 418, 1117. DOI. ADS.
ADS
Article
Google Scholar
Wills-Davey, M.J., Thompson, B.J.: 1999, Observations of a propagating disturbance in TRACE. Solar Phys. 190, 467. DOI. ADS.
ADS
Article
Google Scholar
Xue, Z.K., Qu, Z.Q., Yan, X.L., Zhao, L., Ma, L.: 2013, Deformation and deceleration of coronal wave. Astron. Astrophys. 556, A152. DOI. ADS.
ADS
Article
Google Scholar
Yuan, D., Shen, Y., Liu, Y., Nakariakov, V.M., Tan, B., Huang, J.: 2013, Distinct propagating fast wave trains associated with flaring energy releases. Astron. Astrophys. 554, A144. DOI. ADS.
ADS
Article
Google Scholar
Zheng, R., Jiang, Y., Yang, J., Bi, Y., Hong, J., Yang, D., Yang, B.: 2012a, A fast propagating extreme-ultraviolet wave associated with a mini-filament eruption. Astrophys. J. 753, 112. DOI. ADS.
ADS
Article
Google Scholar
Zheng, R., Jiang, Y., Yang, J., Bi, Y., Hong, J., Yang, D., Yang, B.: 2012b, An extreme ultraviolet wave associated with a micro-sigmoid eruption. Astrophys. J. Lett. 753, L29. DOI. ADS.
ADS
Article
Google Scholar
Zheng, R., Jiang, Y., Yang, J., Bi, Y., Hong, J., Yang, B., Yang, D.: 2013, An extreme-ultraviolet wave associated with a surge. Astrophys. J. 764, 70. DOI. ADS.
ADS
Article
Google Scholar
Zhou, X., Liang, H.: 2017, The relationship between the 5-min oscillation and 3-min oscillations at the umbral/penumbral sunspot boundary. Astrophys. Space Sci. 362, 46. DOI. ADS.
ADS
Article
Google Scholar
Zhou, X., Liang, H., Li, Q., Zhang, W., OuYang, W.: 2017, Statistical research of the umbral and penumbral oscillations. New Astron. 51, 86. DOI. ADS.
ADS
Article
Google Scholar
Zhukov, A.N., Auchère, F.: 2004, On the nature of EIT waves, EUV dimmings and their link to CMEs. Astron. Astrophys. 427, 705. DOI. ADS.
ADS
Article
Google Scholar