Skip to main content

CME-Driven and Flare-Ignited Fast Magnetosonic Waves Detected in a Solar Eruption

Abstract

We present Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) observation of three types of fast-mode, propagating, magnetosonic waves in a GOES C3.0 flare on 23 April 2013, which was accompanied by a prominence eruption and a broad coronal mass ejection (CME). During the fast-rising phase of the prominence, a large-scale, dome-shaped, extreme-ultraviolet (EUV) wave firstly formed ahead of the CME bubble and propagated at a speed of about 430 km s−1 in the CME’s lateral direction. One can identify the separation process of the EUV wave from the CME bubble. The reflection effect of the on-disk counterpart of this EUV wave was also observed when it interacted with a remote active region. Six minutes after the first appearance of the EUV wave, a large-scale, quasi-periodic EUV train with a period of about 120 seconds, which emanated from the flare epicenter and propagated outward at an average speed up to 1100 km s−1, appeared inside the CME bubble. In addition, another narrow, quasi-periodic EUV wave train, which also emanated from the flare epicenter, propagated at a speed of about 475 km s−1 and with a period of about 110 seconds, was observed along a closed-loop system connecting two adjacent active regions. We propose that all of the observed waves are fast-mode magnetosonic waves, in which the large-scale, dome-shaped EUV wave ahead of the CME bubble was driven by the expansion of the CME bubble, while the large-scale, quasi-periodic EUV train within the CME bubble and the narrow quasi-periodic EUV wave train along the closed-loop system were excited by the intermittent energy-releasing process in the flare. Coronal seismology application and energy carried by the waves are also estimated based on the measured wave parameters.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Notes

  1. Note that the narrow quasi-periodic wave trains, channeled in the waveguides, essentially are dispersive waves. The energy flux carried by them should be correctly estimated using the classic formula \(\mathcal{F} \geqslant\frac{1}{2}\rho(\omega_{\mathrm{obs}})^{2} v_{ \mathrm{gr}}^{3}\), where \(\rho\) is the plasma density, \(\omega_{\mathrm{obs}}\) is the wave amplitude, and \(v_{\mathrm{gr}}\) is the group speed (Van Doorsselaere et al., 2014). Here the using of the \(v_{\mathrm{ph}}\) is a rough estimation for dispersive waves.

References

  • Aschwanden, M.J.: 2004a, Physics of the Solar Corona. An Introduction, Reidel, Dordrecht. ADS.

    Google Scholar 

  • Aschwanden, M.J.: 2004b, The role of observed MHD oscillations and waves for coronal heating. In: Walsh, R.W., Ireland, J., Danesy, D., Fleck, B. (eds.) SOHO 15 Workshop – Coronal Heating, SP-575. ESA, Noordwijk, 97. ADS.

    Google Scholar 

  • Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: 1999, Coronal loop oscillations observed with the transition region and coronal explorer. Astrophys. J. 520, 880. DOI. ADS.

    ADS  Article  Google Scholar 

  • Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: The radio and plasma wave investigation on the wind spacecraft. Space Sci. Rev. 71, 231. DOI. ADS.

    ADS  Article  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADS.

    ADS  Article  Google Scholar 

  • Chandra, R., Chen, P.F., Joshi, R., Joshi, B., Schmieder, B.: 2018, Observations of two successive EUV waves and their mode conversion. Astrophys. J. 863, 101. DOI. ADS.

    ADS  Article  Google Scholar 

  • Chen, P.F.: 2006, The relation between EIT waves and solar flares. Astrophys. J. Lett. 641, L153. DOI. ADS.

    ADS  Article  Google Scholar 

  • Chen, P.F., Fang, C., Shibata, K.: 2005, A full view of EIT waves. Astrophys. J. 622, 1202. DOI. ADS.

    ADS  Article  Google Scholar 

  • Chen, P.F., Wu, Y.: 2011, First evidence of coexisting EIT wave and coronal Moreton wave from SDO/AIA observations. Astrophys. J. Lett. 732, L20. DOI. ADS.

    ADS  Article  Google Scholar 

  • Chen, P.F., Wu, S.T., Shibata, K., Fang, C.: 2002, Evidence of EIT and Moreton waves in numerical simulations. Astrophys. J. Lett. 572, L99. DOI. ADS.

    ADS  Article  Google Scholar 

  • Cheng, X., Zhang, J., Olmedo, O., Vourlidas, A., Ding, M.D., Liu, Y.: 2012, Investigation of the formation and separation of an extreme-ultraviolet wave from the expansion of a coronal mass ejection. Astrophys. J. Lett. 745, L5. DOI. ADS.

    ADS  Article  Google Scholar 

  • Cliver, E.W., Laurenza, M., Storini, M., Thompson, B.J.: 2005, On the origins of solar EIT waves. Astrophys. J. 631, 604. DOI. ADS.

    ADS  Article  Google Scholar 

  • Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291. DOI. ADS.

    ADS  Article  Google Scholar 

  • Delannée, C., Artzner, G., Schmieder, B., Parenti, S.: 2014, Time evolution of the altitude of an observed coronal wave. Solar Phys. 289, 2565. DOI. ADS.

    ADS  Article  Google Scholar 

  • Eselevich, V.G., Eselevich, M.V., Zimovets, I.V.: 2019, Observations of a flare-generated blast wave in a pseudo coronal mass ejection event. Solar Phys. 294, 73. DOI. ADS.

    ADS  Article  Google Scholar 

  • Gao, G.-N., Wang, M., Lin, J., Wu, N., Tan, C.-M., Kliem, B., Su, Y.: 2014, Radio observations of the fine structure inside a post-CME current sheet. Res. Astron. Astrophys. 14, 843. DOI. ADS.

    ADS  Article  Google Scholar 

  • Goddard, C.R., Nisticò, G., Nakariakov, V.M., Zimovets, I.V., White, S.M.: 2016, Observation of quasi-periodic solar radio bursts associated with propagating fast-mode waves. Astron. Astrophys. 594, A96. DOI. ADS.

    ADS  Article  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Temmer, M., Davila, J., Thompson, W.T., Jones, S., McAteer, R.T.J., Wuelser, J.-P., Freeland, S., Howard, R.A.: 2009, EUV wave reflection from a coronal hole. Astrophys. J. Lett. 691, L123. DOI. ADS.

    ADS  Article  Google Scholar 

  • Guo, Y., Ding, M.D., Chen, P.F.: 2015, Slow patchy extreme-ultraviolet propagating fronts associated with fast coronal magneto-acoustic waves in solar eruptions. Astrophys. J. Suppl. 219, 36. DOI. ADS.

    ADS  Article  Google Scholar 

  • Hu, H., Liu, Y.D., Zhu, B., Peter, H., He, W., Wang, R., Yang, Z.: 2019, Effects of coronal density and magnetic field distributions on a global solar EUV wave. Astrophys. J. 878, 106. DOI. ADS.

    ADS  Article  Google Scholar 

  • Hudson, H.S., Khan, J.I., Lemen, J.R., Nitta, N.V., Uchida, Y.: 2003, Soft X-ray observation of a large-scale coronal wave and its exciter. Solar Phys. 212, 121. DOI. ADS.

    ADS  Article  Google Scholar 

  • Karpen, J.T., Antiochos, S.K., DeVore, C.R.: 2012, The mechanisms for the onset and explosive eruption of coronal mass ejections and eruptive flares. Astrophys. J. 760, 81. DOI. ADS.

    ADS  Article  Google Scholar 

  • Khan, J.I., Aurass, H.: 2002, X-ray observations of a large-scale solar coronal shock wave. Astron. Astrophys. 383, 1018. DOI. ADS.

    ADS  Article  Google Scholar 

  • Kliem, B., Török, T.: 2006, Torus instability. Phys. Rev. L 96, 255002. DOI. ADS.

    ADS  Article  Google Scholar 

  • Kolotkov, D.Y., Nakariakov, V.M., Kontar, E.P.: 2018, Origin of the modulation of the radio emission from the solar corona by a fast magnetoacoustic wave. Astrophys. J. 861, 33. DOI. ADS.

    ADS  Article  Google Scholar 

  • Kolotkov, D.Y., Nakariakov, V.M., Moss, G., Shellard, P.: 2021, Fast magnetoacoustic wave trains: From tadpoles to boomerangs. Mon. Not. Roy. Astron. Soc. 505, 3505. DOI. ADS.

    ADS  Article  Google Scholar 

  • Kozarev, K.A., Korreck, K.E., Lobzin, V.V., Weber, M.A., Schwadron, N.A.: 2011, Off-limb solar coronal wavefronts from SDO/AIA extreme-ultraviolet observations—implications for particle production. Astrophys. J. Lett. 733, L25. DOI. ADS.

    ADS  Article  Google Scholar 

  • Krause, G., Cécere, M., Zurbriggen, E., Costa, A., Francile, C., Elaskar, S.: 2018, Are CMEs capable of producing Moreton waves? A case study: The 2006 December 6 event. Mon. Not. Roy. Astron. Soc. 474, 770. DOI. ADS.

    ADS  Article  Google Scholar 

  • Kumar, P., Innes, D.E.: 2013, Multiwavelength observations of an eruptive flare: Evidence for blast waves and break-out. Solar Phys. 288, 255. DOI. ADS.

    ADS  Article  Google Scholar 

  • Kumar, P., Innes, D.E.: 2015, Partial reflection and trapping of a fast-mode wave in solar coronal arcade loops. Astrophys. J. Lett. 803, L23. DOI. ADS.

    ADS  Article  Google Scholar 

  • Kumar, P., Innes, D.E., Cho, K.-S.: 2016, Flare-generated shock wave propagation through solar coronal arcade loops and an associated type II radio burst. Astrophys. J. 828, 28. DOI. ADS.

    ADS  Article  Google Scholar 

  • Kumar, P., Manoharan, P.K.: 2013, Eruption of a plasma blob, associated M-class flare, and large-scale extreme-ultraviolet wave observed by SDO. Astron. Astrophys. 553, A109. DOI. ADS.

    ADS  Article  Google Scholar 

  • Kumar, P., Nakariakov, V.M., Cho, K.-S.: 2017, Quasi-periodic radio bursts associated with fast-mode waves near a magnetic null point. Astrophys. J. 844, 149. DOI. ADS.

    ADS  Article  Google Scholar 

  • Kumar, P., Cho, K.-S., Chen, P.F., Bong, S.-C., Park, S.-H.: 2013, Multiwavelength study of a solar eruption from AR NOAA 11112: II. Large-scale coronal wave and loop oscillation. Solar Phys. 282, 523. DOI. ADS.

    ADS  Article  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS.

    ADS  Article  Google Scholar 

  • Li, D., Ning, Z.J., Zhang, Q.M.: 2015, Imaging and spectral observations of quasi-periodic pulsations in a solar flare. Astrophys. J. 807, 72. DOI. ADS.

    ADS  Article  Google Scholar 

  • Li, T., Zhang, J., Yang, S., Liu, W.: 2012, SDO/AIA observations of secondary waves generated by interaction of the 2011 June 7 global EUV wave with solar coronal structures. Astrophys. J. 746, 13. DOI. ADS.

    ADS  Article  Google Scholar 

  • Li, D., Zhang, Q.M., Huang, Y., Ning, Z.J., Su, Y.N.: 2017, Quasi-periodic pulsations with periods that change depending on whether the pulsations have thermal or nonthermal components. Astron. Astrophys. 597, L4. DOI. ADS.

    ADS  Article  Google Scholar 

  • Li, B., Guo, M.-Z., Yu, H., Chen, S.-X.: 2018, Impulsively generated wave trains in coronal structures. II. Effects of transverse structuring on sausage waves in pressurelesss slabs. Astrophys. J. 855, 53. DOI. ADS.

    ADS  Article  Google Scholar 

  • Li, B., Antolin, P., Guo, M.-Z., Kuznetsov, A.A., Pascoe, D.J., Van Doorsselaere, T., Vasheghani Farahani, S.: 2020, Magnetohydrodynamic fast sausage waves in the solar corona. Space Sci. Rev. 216, 136. DOI. ADS.

    ADS  Article  Google Scholar 

  • Liu, W., Ofman, L.: 2014, Advances in observing various coronal EUV waves in the SDO era and their seismological applications (invited review). Solar Phys. 289, 3233. DOI. ADS.

    ADS  Article  Google Scholar 

  • Liu, Y.D., Zhu, B., Zhao, X.: 2019, Geometry, kinematics, and heliospheric impact of a large CME-driven shock in 2017 September. Astrophys. J. 871, 8. DOI. ADS.

    ADS  Article  Google Scholar 

  • Liu, W., Title, A.M., Zhao, J., Ofman, L., Schrijver, C.J., Aschwanden, M.J., De Pontieu, B., Tarbell, T.D.: 2011, Direct imaging of quasi-periodic fast propagating waves of ∼2000 km s−1 in the low solar corona by the solar dynamics observatory atmospheric imaging assembly. Astrophys. J. Lett. 736, L13. DOI. ADS.

    ADS  Article  Google Scholar 

  • Liu, W., Ofman, L., Nitta, N.V., Aschwanden, M.J., Schrijver, C.J., Title, A.M., Tarbell, T.D.: 2012, Quasi-periodic fast-mode wave trains within a global EUV wave and sequential transverse oscillations detected by SDO/AIA. Astrophys. J. 753, 52. DOI. ADS.

    ADS  Article  Google Scholar 

  • Liu, R., Liu, C., Xu, Y., Liu, W., Kliem, B., Wang, H.: 2013, Observation of a Moreton wave and wave-filament interactions associated with the renowned X9 flare on 1990 May 24. Astrophys. J. 773, 166. DOI. ADS.

    ADS  Article  Google Scholar 

  • Liu, W., Ofman, L., Broder, B., Karlický, M., Downs, C.: 2016, Quasi-periodic fast-mode magnetosonic wave trains within coronal waveguides associated with flares and CMEs. CP-1720 AIP, Melville, 040010. DOI. ADS.

    Book  Google Scholar 

  • Liu, W., Jin, M., Downs, C., Ofman, L., Cheung, M.C.M., Nitta, N.V.: 2018, A truly global extreme ultraviolet wave from the SOL2017-09-10 X8.2+ solar flare-coronal mass ejection. Astrophys. J. Lett. 864, L24. DOI. ADS.

    ADS  Article  Google Scholar 

  • Liu, R., Wang, Y., Lee, J., Shen, C.: 2019, Impacts of EUV wavefronts on coronal structures in homologous coronal mass ejections. Astrophys. J. 870, 15. DOI. ADS.

    ADS  Article  Google Scholar 

  • Long, D.M., DeLuca, E.E., Gallagher, P.T.: 2011, The wave properties of coronal bright fronts observed using SDO/AIA. Astrophys. J. Lett. 741, L21. DOI. ADS.

    ADS  Article  Google Scholar 

  • Long, D.M., Bloomfield, D.S., Chen, P.F., Downs, C., Gallagher, P.T., Kwon, R.-Y., Vanninathan, K., Veronig, A.M., Vourlidas, A., Vršnak, B., Warmuth, A., Žic, T.: 2017, Understanding the physical nature of coronal “EIT waves”. Solar Phys. 292, 7. DOI. ADS.

    ADS  Article  Google Scholar 

  • Ma, S., Raymond, J.C., Golub, L., Lin, J., Chen, H., Grigis, P., Testa, P., Long, D.: 2011, Observations and interpretation of a low coronal shock wave observed in the EUV by the SDO/AIA. Astrophys. J. 738, 160. DOI. ADS.

    ADS  Article  Google Scholar 

  • Magdalenić, J., Vršnak, B., Pohjolainen, S., Temmer, M., Aurass, H., Lehtinen, N.J.: 2008, A flare-generated shock during a coronal mass ejection on 24 December 1996. Solar Phys. 253, 305. DOI. ADS.

    ADS  Article  Google Scholar 

  • Magdalenić, J., Marqué, C., Zhukov, A.N., Vršnak, B., Veronig, A.: 2012, Flare-generated type II burst without associated coronal mass ejection. Astrophys. J. 746, 152. DOI. ADS.

    ADS  Article  Google Scholar 

  • Mann, G.: 1995, Simple magnetohydrodynamic waves. J. Plasma Phys. 53, 109. DOI. ADS.

    ADS  Article  Google Scholar 

  • Mészárosová, H., Karlický, M., Rybák, J.: 2011, Magnetoacoustic wave trains in the 11 July 2005 radio event with fiber bursts. Solar Phys. 273, 393. DOI. ADS.

    ADS  Article  Google Scholar 

  • Mészárosová, H., Karlický, M., Rybák, J., Jiřička, K.: 2009, Tadpoles in wavelet spectra of a solar decimetric radio burst. Astrophys. J. Lett. 697, L108. DOI. ADS.

    ADS  Article  Google Scholar 

  • Miao, Y.H., Liu, Y., Shen, Y.D., Li, H.B., Abidin, Z.Z., Elmhamdi, A., Kordi, A.S.: 2019, A quasi-periodic propagating wave and extreme-ultraviolet waves excited simultaneously in a solar eruption event. Astrophys. J. Lett. 871, L2. DOI. ADS.

    ADS  Article  Google Scholar 

  • Miao, Y., Li, D., Yuan, D., Jiang, C., Elmhamdi, A., Zhao, M., Anfinogentov, S.: 2021, Diagnosing a solar flaring core with bidirectional quasi-periodic fast propagating magnetoacoustic waves. Astrophys. J. Lett. 908, L37. DOI. ADS.

    ADS  Article  Google Scholar 

  • Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: 2001, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552, 833. DOI. ADS.

    ADS  Article  Google Scholar 

  • Moreton, G.E., Ramsey, H.E.: 1960, Recent observations of dynamical phenomena associated with solar flares. Pub. Astron. Soc. Pac. 72, 357. DOI. ADS.

    ADS  Article  Google Scholar 

  • Moses, D., Clette, F., Delaboudinière, J.-P., Artzner, G.E., Bougnet, M., Brunaud, J., Carabetian, C., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Newmark, J., Thompson, B., Maucherat, A., Portier-Fozzani, F., Berghmans, D., Cugnon, P., van Dessel, E.L., Gabryl, J.R.: 1997, EIT observations of the extreme ultraviolet Sun. Solar Phys. 175, 571. DOI. ADS.

    ADS  Article  Google Scholar 

  • Nakariakov, V.M., Verwichte, E.: 2005, Coronal waves and oscillations. Liv. Rev. Solar Phys. 2, 3. DOI. ADS.

    ADS  Article  Google Scholar 

  • Nakariakov, V.M., Arber, T.D., Ault, C.E., Katsiyannis, A.C., Williams, D.R., Keenan, F.P.: 2004, Time signatures of impulsively generated coronal fast wave trains. Mon. Not. Roy. Astron. Soc. 349, 705. DOI. ADS.

    ADS  Article  Google Scholar 

  • Neupert, W.M.: 1968, Comparison of solar X-ray line emission with microwave emission during flares. Astrophys. J. Lett. 153, L59. DOI. ADS.

    ADS  Article  Google Scholar 

  • Nisticò, G., Pascoe, D.J., Nakariakov, V.M.: 2014, Observation of a high-quality quasi-periodic rapidly propagating wave train using SDO/AIA. Astron. Astrophys. 569, A12. DOI. ADS.

    ADS  Article  Google Scholar 

  • Ofman, L.: 2007, Three-dimensional MHD model of wave activity in a coronal active region. Astrophys. J. 655, 1134. DOI. ADS.

    ADS  Article  Google Scholar 

  • Ofman, L., Thompson, B.J.: 2002, Interaction of EIT waves with coronal active regions. Astrophys. J. 574, 440. DOI. ADS.

    ADS  Article  Google Scholar 

  • Ofman, L., Liu, W., Title, A., Aschwanden, M.: 2011, Modeling super-fast magnetosonic waves observed by SDO in active region funnels. Astrophys. J. Lett. 740, L33. DOI. ADS.

    ADS  Article  Google Scholar 

  • Olmedo, O., Vourlidas, A., Zhang, J., Cheng, X.: 2012, Secondary waves and/or the “reflection” from and “transmission” through a coronal hole of an extreme ultraviolet wave associated with the 2011 February 15 X2.2 flare observed with SDO/AIA and STEREO/EUVI. Astrophys. J. 756, 143. DOI. ADS.

    ADS  Article  Google Scholar 

  • Pascoe, D.J., Nakariakov, V.M., Kupriyanova, E.G.: 2013, Fast magnetoacoustic wave trains in magnetic funnels of the solar corona. Astron. Astrophys. 560, A97. DOI. ADS.

    ADS  Article  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI. ADS.

    ADS  Article  Google Scholar 

  • Priest, E.R.: 1982, Solar Magneto-Hydrodynamics, Reidel, Dordrecht. ADS.

    Book  Google Scholar 

  • Qu, Z.N., Jiang, L.Q., Chen, S.L.: 2017, Observations of a fast-mode magnetosonic wave propagating along a curving coronal loop on 2011 November 11. Astrophys. J. 851, 41. DOI. ADS.

    ADS  Article  Google Scholar 

  • Reid, H.A.S., Ratcliffe, H.: 2014, A review of solar type III radio bursts. Res. Astron. Astrophys. 14, 773. DOI. ADS.

    ADS  Article  Google Scholar 

  • Roberts, B., Edwin, P.M., Benz, A.O.: 1983, Fast pulsations in the solar corona. Nature 305, 688. DOI. ADS.

    ADS  Article  Google Scholar 

  • Roberts, B., Edwin, P.M., Benz, A.O.: 1984, On coronal oscillations. Astrophys. J. 279, 857. DOI. ADS.

    ADS  Article  Google Scholar 

  • Schrijver, C.J., Aschwanden, M.J., Title, A.M.: 2002, Transverse oscillations in coronal loops observed with TRACE I. An overview of events, movies, and a discussion of common properties and required conditions. Solar Phys. 206, 69. DOI. ADS.

    ADS  Article  Google Scholar 

  • Schrijver, C.J., De Rosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165. DOI. ADS.

    ADS  Article  Google Scholar 

  • Shen, Y.: 2021, Observation and modelling of solar jets. Proc. Roy. Soc. London Ser. A 477, 217. DOI. ADS.

    Article  Google Scholar 

  • Shen, Y., Liu, Y.: 2012a, Evidence for the wave nature of an extreme ultraviolet wave observed by the atmospheric imaging assembly on board the solar dynamics observatory. Astrophys. J. 754, 7. DOI. ADS.

    ADS  Article  Google Scholar 

  • Shen, Y., Liu, Y.: 2012b, Observational study of the quasi-periodic fast-propagating magnetosonic waves and the associated flare on 2011 May 30. Astrophys. J. 753, 53. DOI. ADS.

    ADS  Article  Google Scholar 

  • Shen, Y., Liu, Y.: 2012c, Simultaneous observations of a large-scale wave event in the solar atmosphere: From photosphere to corona. Astrophys. J. Lett. 752, L23. DOI. ADS.

    ADS  Article  Google Scholar 

  • Shen, Y., Song, T., Liu, Y.: 2018, Dispersively formed quasi-periodic fast magnetosonic wavefronts due to the eruption of a nearby mini-filament. Mon. Not. Roy. Astron. Soc. 477, L6. DOI. ADS.

    ADS  Article  Google Scholar 

  • Shen, Y.-D., Liu, Y., Su, J.-T., Li, H., Zhang, X.-F., Tian, Z.-J., Zhao, R.-J., Elmhamdi, A.: 2013a, Observations of a quasi-periodic, fast-propagating magnetosonic wave in multiple wavelengths and its interaction with other magnetic structures. Solar Phys. 288, 585. DOI. ADS.

    ADS  Article  Google Scholar 

  • Shen, Y., Liu, Y., Su, J., Li, H., Zhao, R., Tian, Z., Ichimoto, K., Shibata, K.: 2013b, Diffraction, refraction, and reflection of an extreme-ultraviolet wave observed during its interactions with remote active regions. Astrophys. J. Lett. 773, L33. DOI. ADS.

    ADS  Article  Google Scholar 

  • Shen, Y., Ichimoto, K., Ishii, T.T., Tian, Z., Zhao, R., Shibata, K.: 2014, A chain of winking (oscillating) filaments triggered by an invisible extreme-ultraviolet wave. Astrophys. J. 786, 151. DOI. ADS.

    ADS  Article  Google Scholar 

  • Shen, Y., Liu, Y.D., Su, J., Qu, Z., Tian, Z.: 2017a, On a solar blowout jet: Driving mechanism and the formation of cool and hot components. Astrophys. J. 851, 67. DOI. ADS.

    ADS  Article  Google Scholar 

  • Shen, Y., Liu, Y., Tian, Z., Qu, Z.: 2017b, On a small-scale EUV wave: The driving mechanism and the associated oscillating filament. Astrophys. J. 851, 101. DOI. ADS.

    ADS  Article  Google Scholar 

  • Shen, Y., Liu, Y., Liu, Y.D., Su, J., Tang, Z., Miao, Y.: 2018a, Homologous large-amplitude nonlinear fast-mode magnetosonic waves driven by recurrent coronal jets. Astrophys. J. 861, 105. DOI. ADS.

    ADS  Article  Google Scholar 

  • Shen, Y., Liu, Y., Song, T., Tian, Z.: 2018b, A quasi-periodic fast-propagating magnetosonic wave associated with the eruption of a magnetic flux rope. Astrophys. J. 853, 1. DOI. ADS.

    ADS  Article  Google Scholar 

  • Shen, Y., Tang, Z., Li, H., Liu, Y.: 2018c, Coronal EUV, QFP, and kink waves simultaneously launched during the course of jet-loop interaction. Mon. Not. Roy. Astron. Soc. 480, L63. DOI. ADS.

    ADS  Article  Google Scholar 

  • Shen, Y., Tang, Z., Miao, Y., Su, J., Liu, Y.: 2018d, EUV waves driven by the sudden expansion of transequatorial loops caused by coronal jets. Astrophys. J. Lett. 860, L8. DOI. ADS.

    ADS  Article  Google Scholar 

  • Shen, Y., Chen, P.F., Liu, Y.D., Shibata, K., Tang, Z., Liu, Y.: 2019, First unambiguous imaging of large-scale quasi-periodic extreme-ultraviolet wave or shock. Astrophys. J. 873, 22. DOI. ADS.

    ADS  Article  Google Scholar 

  • Shen, Y., Li, B., Chen, P., Zhou, X., Liu, Y.: 2020, Research progress on coronal extreme ultraviolet waves. Chin. Sci. Bull. 65, 3909. DOI.

    Article  Google Scholar 

  • Shen, Y., Zhou, X., Duan, Y., Tang, Z., Zhou, C., Tan, S.: 2021, Quasi-periodic fast-mode propagating wave trains in the Corona: A review. Solar Phys., submitted.

  • Shestov, S., Nakariakov, V.M., Kuzin, S.: 2015, Fast magnetoacoustic wave trains of sausage symmetry in cylindrical waveguides of the solar corona. Astrophys. J. 814, 135. DOI. ADS.

    ADS  Article  Google Scholar 

  • Su, W., Cheng, X., Ding, M.D., Chen, P.F., Sun, J.Q.: 2015, A type II radio burst without a coronal mass ejection. Astrophys. J. 804, 88. DOI. ADS.

    ADS  Article  Google Scholar 

  • Takasao, S., Shibata, K.: 2016, Above-the-loop-top oscillation and quasi-periodic coronal wave generation in solar flares. Astrophys. J. 823, 150. DOI. ADS.

    ADS  Article  Google Scholar 

  • Thompson, B.J., Myers, D.C.: 2009, A catalog of coronal “EIT wave” transients. Astrophys. J. Suppl. 183, 225. DOI. ADS.

    ADS  Article  Google Scholar 

  • Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St. Cyr, O.C., Michels, D.J.: 1998, SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett. 25, 2465. DOI. ADS.

    ADS  Article  Google Scholar 

  • Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteor. Soc. 79, 61. DOI. ADS.

    ADS  Article  Google Scholar 

  • Tripathi, D., Isobe, H., Jain, R.: 2009, Large amplitude oscillations in prominences. Space Sci. Rev. 149, 283. DOI. ADS.

    ADS  Article  Google Scholar 

  • Uchida, Y.: 1968, Propagation of hydromagnetic disturbances in the solar corona and Moreton’s wave phenomenon. Solar Phys. 4, 30. DOI. ADS.

    ADS  Article  Google Scholar 

  • Uchida, Y.: 1970, Diagnosis of coronal magnetic structure by flare-associated hydromagnetic disturbances. Pub. Astron. Soc. Japan 22, 341. ADS.

    ADS  Google Scholar 

  • Van Doorsselaere, T., Gijsen, S.E., Andries, J., Verth, G.: 2014, Energy propagation by transverse waves in multiple flux tube systems using filling factors. Astrophys. J. 795, 18. DOI. ADS.

    ADS  Article  Google Scholar 

  • Veronig, A.M., Muhr, N., Kienreich, I.W., Temmer, M., Vršnak, B.: 2010, First observations of a dome-shaped large-scale coronal extreme-ultraviolet wave. Astrophys. J. Lett. 716, L57. DOI. ADS.

    ADS  Article  Google Scholar 

  • Vršnak, B., Cliver, E.W.: 2008, Origin of coronal shock waves. Invited review. Solar Phys. 253, 215. DOI. ADS.

    ADS  Article  Google Scholar 

  • Wang, J., Yan, X., Kong, D., Xue, Z., Yang, L., Li, Q.: 2020, A small-scale filament eruption inducing a Moreton wave, an EUV wave, and a coronal mass ejection. Astrophys. J. 894, 30. DOI. ADS.

    ADS  Article  Google Scholar 

  • Warmuth, A.: 2007, Large-Scale Waves and Shocks in the Solar Corona, Lecture Notes in Physics 725, Springer, Berlin, 107. ADS.

    Google Scholar 

  • Warmuth, A.: 2010, Large-scale waves in the solar corona: The continuing debate. Adv. Space Res. 45, 527. DOI. ADS.

    ADS  Article  Google Scholar 

  • Warmuth, A.: 2015, Large-scale globally propagating coronal waves. Liv. Rev. Solar Phys. 12, 3. DOI. ADS.

    ADS  Article  Google Scholar 

  • Warmuth, A., Vršnak, B., Magdalenić, J., Hanslmeier, A., Otruba, W.: 2004, A multiwavelength study of solar flare waves. II. Perturbation characteristics and physical interpretation. Astron. Astrophys. 418, 1117. DOI. ADS.

    ADS  Article  Google Scholar 

  • Wills-Davey, M.J., Thompson, B.J.: 1999, Observations of a propagating disturbance in TRACE. Solar Phys. 190, 467. DOI. ADS.

    ADS  Article  Google Scholar 

  • Xue, Z.K., Qu, Z.Q., Yan, X.L., Zhao, L., Ma, L.: 2013, Deformation and deceleration of coronal wave. Astron. Astrophys. 556, A152. DOI. ADS.

    ADS  Article  Google Scholar 

  • Yuan, D., Shen, Y., Liu, Y., Nakariakov, V.M., Tan, B., Huang, J.: 2013, Distinct propagating fast wave trains associated with flaring energy releases. Astron. Astrophys. 554, A144. DOI. ADS.

    ADS  Article  Google Scholar 

  • Zheng, R., Jiang, Y., Yang, J., Bi, Y., Hong, J., Yang, D., Yang, B.: 2012a, A fast propagating extreme-ultraviolet wave associated with a mini-filament eruption. Astrophys. J. 753, 112. DOI. ADS.

    ADS  Article  Google Scholar 

  • Zheng, R., Jiang, Y., Yang, J., Bi, Y., Hong, J., Yang, D., Yang, B.: 2012b, An extreme ultraviolet wave associated with a micro-sigmoid eruption. Astrophys. J. Lett. 753, L29. DOI. ADS.

    ADS  Article  Google Scholar 

  • Zheng, R., Jiang, Y., Yang, J., Bi, Y., Hong, J., Yang, B., Yang, D.: 2013, An extreme-ultraviolet wave associated with a surge. Astrophys. J. 764, 70. DOI. ADS.

    ADS  Article  Google Scholar 

  • Zhou, X., Liang, H.: 2017, The relationship between the 5-min oscillation and 3-min oscillations at the umbral/penumbral sunspot boundary. Astrophys. Space Sci. 362, 46. DOI. ADS.

    ADS  Article  Google Scholar 

  • Zhou, X., Liang, H., Li, Q., Zhang, W., OuYang, W.: 2017, Statistical research of the umbral and penumbral oscillations. New Astron. 51, 86. DOI. ADS.

    ADS  Article  Google Scholar 

  • Zhukov, A.N., Auchère, F.: 2004, On the nature of EIT waves, EUV dimmings and their link to CMEs. Astron. Astrophys. 427, 705. DOI. ADS.

    ADS  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the SDO teams for the data, and the anonymous referee for their suggestions and comments. This work is supported by the National Key R&D Program of China (2019YFA0405000), the Natural Science Foundation of China (12173083, 11922307, 11773068, 11633008), the Yunnan Science Foundation for Distinguished Young Scholars (202101AV070004), the Specialized Research Fund for State Key Laboratories, the Open Research Program of CAS Key Laboratory of Solar Activity (KLSA202017), the West Light Foundation of Chinese Academy of Sciences, and the Yunnan Science Foundation (2017FB006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuandeng Shen.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Magnetohydrodynamic (MHD) Waves and Oscillations in the Sun’s Corona and MHD Coronal Seismology

Guest Editors: Dmitrii Kolotkov and Bo Li

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Shen, Y., Su, J. et al. CME-Driven and Flare-Ignited Fast Magnetosonic Waves Detected in a Solar Eruption. Sol Phys 296, 169 (2021). https://doi.org/10.1007/s11207-021-01913-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01913-2

Keywords

  • Waves, magnetohydrodynamic
  • Magnetic fields, corona
  • Coronal seismology