Skip to main content
Log in

On the Estimation of the SHARP Parameter MEANALP from AIA Images Using Deep Neural Networks

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Space-weather HMI Active Region Patches (SHARPs) data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) provides high cadence data from the full-disk photospheric magnetic field. The SHARP’s MEANALP (\(\alpha _{m}\)) parameter, which characterizes the twist, can provide a measure of nonpotentiality of an active region, which can be a condition for the occurrence of solar flares. The SDO/Atmospheric Imaging Assembly (AIA) captures images at a higher cadence (12 or 24 seconds) than the SDO/HMI. Hence, if the \(\alpha _{m}\) can be inferred from the AIA data, we can estimate the magnetic field evolution of an active region at a higher temporal cadence. Shortly before a flare occurs, we observed a change in the \(\alpha _{m}\) in some active regions that produced stronger (M- or X-class) flares. Therefore, we study the ability of neural networks to estimate the \(\alpha _{m}\) parameter from SDO/AIA images. We propose a classification and regression scheme to train deep neural networks using AIA filtergrams of active regions with the objective to estimate the \(\alpha _{m}\) of active regions outside our training set. Our results show a classification accuracy greater than 85% within two classes to identify the range of the \(\alpha _{m}\) parameter. We also attempt to understand the nature of the solar images using variational autoencoders. Thus, this study opens a promising new application of neural networks which can be extended to other SHARP parameters in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Notes

  1. The data needed to reproduce this figure is missing.

References

  • Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al.: 2015, TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.

  • Ahmed, O.W., Qahwaji, R., Colak, T., Higgins, P.A., Gallagher, P.T., Bloomfield, D.S.: 2013, Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Solar Phys. 283(1), 157. DOI.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J.: 2005, Physics of the Solar Corona. An Introduction with Problems and Solutions (2nd edition), Springer, Berlin. DOI.

    Book  Google Scholar 

  • Benson, B., Jiang, Z., Pan, W.D., Gary, G.A., Hu, Q.: 2017, Determination of linear force-free magnetic field constant alpha using deep learning. In: International Conference on Computational Science and Computational Intelligence, 760.

    Google Scholar 

  • Benson, B., Pan, W.D., Gary, G.A., Hu, Q., Staudinger, T.: 2019, Determining the parameter for the linear force-free magnetic field model with multi-dipolar configurations using deep neural networks. Astron. Comput. 26, 50. DOI.

    Article  ADS  Google Scholar 

  • Benson, B., Pan, W.D., Prasad, A., Gary, G.A., Hu, Q.: 2020, Forecasting solar cycle 25 using deep neural networks. Solar Phys. 295(5), 65. DOI.

    Article  ADS  Google Scholar 

  • Bobra, M.G., Couvidat, S.: 2015, Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J. 798(2), 135. DOI.

    Article  ADS  Google Scholar 

  • Bobra, M.G., Ilonidis, S.: 2016,. Astrophys. J. 821(2), 127. DOI.

    Article  ADS  Google Scholar 

  • Bobra, M.G., Sun, X., Hoeksema, J.T., Turmon, M., Liu, Y., Hayashi, K., Barnes, G., Leka, K.D.: 2014, The helioseismic and magnetic imager (HMI) vector magnetic field pipeline: SHARPs – space-weather HMI active region patches. Solar Phys. 289(9), 3549. DOI.

    Article  ADS  Google Scholar 

  • Camporeale, E.: 2019, The challenge of machine learning in space weather: nowcasting and forecasting. Space Weather 17(8), 1166. DOI.

    Article  ADS  Google Scholar 

  • Chollet, F.: 2015, Keras, GitHub.

  • Chollet, F.: 2016, The Keras Blog: Building Autoencoders in Keras. Accessed: 2019-08-31. https://blog.keras.io/building-autoencoders-in-keras.html.

  • Falconer, D.A., Moore, R.L., Gary, G.A.: 2002, Correlation of the coronal mass ejection productivity of solar active regions with measures of their global nonpotentiality from vector magnetograms: baseline results. Astrophys. J. 569, 1016.

    Article  ADS  Google Scholar 

  • Fernandez Borda, R.A., Mininni, P.D., Mandrini, C.H., Gómez, D.O., Bauer, O.H., Rovira, M.G.: 2002, Automatic solar flare detection using neural network techniques. Solar Phys. 206(2), 347. DOI.

    Article  ADS  Google Scholar 

  • Gary, G.A.: 1989, Linear force-free magnetic fields for solar extrapolation and interpretation. Astron. Astrophys. Suppl. Ser. 69, 323.

    Article  ADS  Google Scholar 

  • Gary, G.A.: 2001, Plasma beta above a solar active region: rethinking the paradigm. Solar Phys. 203(1), 71.

    Article  ADS  Google Scholar 

  • Hagino, M., Sakurai, T.: 2004, Latitude variation of helicity in solar active regions. Publ. Astron. Soc. Japan 56(5), 831. DOI.

    Article  ADS  Google Scholar 

  • Huang, X., Wang, H., Xu, L., Liu, J., Li, R., Dai, X.: 2018, Deep learning based solar flare forecasting model. I. Results for line-of-sight magnetograms. Astrophys. J. 856(1), 7. DOI.

    Article  ADS  Google Scholar 

  • Jonas, E., Bobra, M., Shankar, V., Hoeksema, J.T., Recht, B.: 2018, Flare prediction using photospheric and coronal image data. Solar Phys. 293(3), 48. DOI.

    Article  ADS  Google Scholar 

  • Kingma, D.P., Welling, M.: 2013, Auto-encoding variational Bayes. arXiv.

  • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: 1998, Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278.

    Article  Google Scholar 

  • Li, R., Wang, H., He, H., Cui, Y., Du, Z.: 2007, Support vector machine combined with k-nearest neighbors for solar flare forecasting. Chin. J. Astron. Astrophys. 7(3), 441. DOI.

    Article  ADS  Google Scholar 

  • Morgan, H., Druckmüller, M.: 2014, Multi-scale Gaussian normalization for solar image processing. Solar Phys. 289(8), 2945. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mumford, S.J., Freij, N., Christe, S., Ireland, J., Mayer, F., Hughitt, V.K., et al.: 2020, Sunpy: a Python package for solar physics J. Open Sour. Softw. 5(46), 1832. DOI.

    Article  ADS  Google Scholar 

  • Nishizuka, N., Sugiura, K., Kubo, Y., Den, M., Ishii, M.: 2018, Deep flare net (DeFN) model for solar flare prediction. Astrophys. J. 858(2), 113. DOI.

    Article  ADS  Google Scholar 

  • Pala, Z., Atici, R.: 2019, Forecasting sunspot time series using deep learning methods. Solar Phys. 294(5), 50 DOI.

    Article  ADS  Google Scholar 

  • Qahwaji, R., Colak, T.: 2007, Automatic short-term solar flare prediction using machine learning and sunspot associations. Solar Phys. 241(1), 195. DOI.

    Article  ADS  Google Scholar 

  • Qu, M., Shih, F.Y., Jing, J., Wang, H.: 2003, Automatic solar flare detection using mlp, rbf, and svm. Solar Phys. 217(1), 157. DOI.

    Article  ADS  Google Scholar 

  • Wang, H.N., Cui, Y.M., Li, R., Zhang, L.Y., Han, H.: 2008, Solar flare forecasting model supported with artificial neural network techniques. Adv. Space Res. 42(9), 1464. DOI.

    Article  ADS  Google Scholar 

  • Watanabe, K., Masuda, S., Segawa, T.: 2012, Hinode flare catalogue. Solar Phys. 279(1), 317. DOI.

    Article  ADS  Google Scholar 

  • Yuan, Y., Shih, F.Y., Jing, J., Wang, H.: 2010, Automated flare forecasting using a statistical learning technique. Res. Astron. Astrophys. 10(8), 785. DOI.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. D. Pan.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benson, B., Pan, W.D., Prasad, A. et al. On the Estimation of the SHARP Parameter MEANALP from AIA Images Using Deep Neural Networks. Sol Phys 296, 163 (2021). https://doi.org/10.1007/s11207-021-01912-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01912-3

Keywords

Navigation