Abstract
Quiescent filaments are usually affected by internal and/or external perturbations triggering oscillations of different kinds. In particular, external large-scale coronal waves can perturb remote quiescent filaments leading to large-amplitude oscillations. Observational reports have indicated that the activation time of oscillations coincides with the passage of a large-scale coronal wavefront through the filament, although the disturbing wave is not always easily detected. Aiming to contribute to understanding how –and to what extent– coronal waves are able to excite filament oscillations, here we modelled with 2.5D magnetohydrodynamic simulations a filament floating in a gravitationally stratified corona disturbed by a coronal shock wave. This simplified scenario results in a two-coupled-oscillation pattern of the filament, which is damped in a few cycles, enabling a detailed analysis. A parametric study was carried out varying parameters of the scenario such as height, size, and mass of the filament. An oscillatory analysis reveals a general tendency for periods of oscillations, amplitudes, and damping times to increase with height, whereas filaments of larger radius exhibit shorter periods and smaller amplitudes. The calculation of forces exerted on the filament shows that the main restoring force is the magnetic tension.











Similar content being viewed by others
References
Adrover-González, A., Terradas, J.: 2020, 3D numerical simulations of oscillations in solar prominences. Astron. Astrophys. 633, A113. DOI. ADS.
Arregui, I., Oliver, R., Ballester, J.L.: 2018, Prominence oscillations. Liv. Rev. Solar Phys. 15, 3. DOI. ADS.
Asai, A., Ishii, T.T., Isobe, H., Kitai, R., Ichimoto, K., UeNo, S., Nagata, S., Morita, S., Nishida, K., Shiota, D., Oi, A., Akioka, M., Shibata, K.: 2012, First simultaneous observation of an H\(\alpha\) Moreton wave, EUV wave, and filament/prominence oscillations. Astrophys. J. Lett. 745, L18. DOI. ADS.
Balsara, D.S.: 2004, Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. 151, 149. DOI. ADS.
Dubey, A., Antypas, K., Calder, A.C., Daley, C., Fryxell, B., Gallagher, J.B., Lamb, D.Q., Lee, D., Olson, K., Reid, L.B., Rich, P., Ricker, P.M., Riley, K.M., Rosner, R., Siegel, A., Taylor, N.T., Weide, K., Timmes, F.X., Vladimirova, N., ZuHone, J.: 2014, Evolution of FLASH, a multi-physics scientific simulation code for high-performance computing. Int. J. High Perform. Comput. Appl. 28, 225. DOI.
Eto, S., Isobe, H., Narukage, N., Asai, A., Morimoto, T., Thompson, B., Yashiro, S., Wang, T., Kitai, R., Kurokawa, H., Shibata, K.: 2002, Relation between a Moreton wave and an EIT wave observed on 1997 November 4. Publ. Astron. Soc. Japan 54, 481. DOI. ADS.
Forbes, T.: 1990, Numerical simulation of a catastrophe model for coronal mass ejection. J. Geophys. Res. 95, 11919.
Francile, C., Costa, A., Luoni, M.L., Elaskar, S.: 2013, H\(\alpha\) Moreton waves observed on December 06, 2006. A 2D case study. Astron. Astrophys. 552, A3. DOI. ADS.
Gilbert, H.R., Daou, A.G., Young, D., Tripathi, D., Alexander, D.: 2008, The filament-Moreton wave interaction of 2006 December 6. Astrophys. J. 685, 629. DOI. ADS.
Goossens, M., Andries, J., Aschwanden, M.J.: 2002, Coronal loop oscillations. An interpretation in terms of resonant absorption of quasi-mode kink oscillations. Astron. Astrophys. 394, L39. DOI. ADS.
Goossens, M., Erdélyi, R., Ruderman, M.S.: 2011, Resonant MHD waves in the solar atmosphere. Space Sci. Rev. 158, 289. DOI. ADS.
Goossens, M., Hollweg, J.V., Sakurai, T.: 1992, Resonant behaviour of magnetohydrodynamic waves on magnetic flux tubes - Part three. Solar Phys. 138, 233. DOI. ADS.
Gosain, S., Foullon, C.: 2012, Dual trigger of transverse oscillations in a prominence by EUV fast and slow coronal waves: SDO/AIA and STEREO/EUVI observations. Astrophys. J. 761, 103. DOI. ADS.
Harrison, C., Krishnan, H.: 2012, Python’s role in VisIt. In: Ahmadia, A., Millman, J., van der Walt, S. (eds.) 11th Python in Science Conf. (scipy 2012). DOI.
Hershaw, J., Foullon, C., Nakariakov, V.M., Verwichte, E.: 2011, Damped large amplitude transverse oscillations in an EUV solar prominence, triggered by large-scale transient coronal waves. Astron. Astrophys. 531, A53. DOI. ADS.
Hyder, C.L.: 1966, Winking filaments and prominence and coronal magnetic fields. Zeit. Astrophys. 63, 78. ADS.
Isobe, H., Tripathi, D.: 2006, Large amplitude oscillation of a polar crown filament in the pre-eruption phase. Astron. Astrophys. 449, L17. DOI. ADS.
Jing, J., Lee, J., Spirock, T.J., Xu, Y., Wang, H., Choe, G.S.: 2003, Periodic motion along a solar filament initiated by a subflare. Astrophys. J. Lett. 584, L103. DOI. ADS.
Kippenhahn, R., Schlüter, A.: 1957, Eine Theorie der solaren Filamente. Zeit. Astrophys. 43, 36. ADS.
Kleczek, J., Kuperus, M.: 1969, Oscillatory phenomena in quiescent prominences. Solar Phys. 6, 72. DOI. ADS.
Kolotkov, D.Y., Nisticò, G., Nakariakov, V.M.: 2016, Transverse oscillations and stability of prominences in a magnetic field dip. Astron. Astrophys. 590, A120. DOI. ADS.
Kolotkov, D.Y., Nisticò, G., Rowlands, G., Nakariakov, V.M.: 2018, Finite amplitude transverse oscillations of a magnetic rope. J. Atmos. Solar-Terr. Phys. 172, 40. DOI. ADS.
Krause, G.: 2019, Hydrostatic equilibrium preservation in MHD numerical simulation with stratified atmospheres. Explicit Godunov-type schemes with MUSCL reconstruction. Astron. Astrophys. 631, A68. DOI. ADS.
Kubo, R.: 1966, The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255. DOI. ADS.
Kuperus, M., Raadu, M.A.: 1974, The support of prominences formed in neutral sheets. Astron. Astrophys. 31, 189. ADS.
Lee, D., Deane, A.E.: 2009, An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics. J. Comp. Phys. 228, 952. DOI. ADS.
Liakh, V., Luna, M., Khomenko, E.: 2020, Numerical simulations of large-amplitude oscillations in flux rope solar prominences. Astron. Astrophys. 637, A75. DOI. ADS.
Lin, Y., Engvold, O., Rouppe van der Voort, L., Wiik, J.E., Berger, T.E.: 2005, Thin threads of solar filaments. Solar Phys. 226, 239. DOI. ADS.
Liu, R., Liu, C., Xu, Y., Liu, W., Kliem, B., Wang, H.: 2013, Observation of a Moreton wave and wave-filament interactions associated with the renowned X9 flare on 1990 May 24. Astrophys. J. 773, 166. DOI. ADS.
Luna, M., Moreno-Insertis, F.: 2021, Large-amplitude prominence oscillations following impact by a coronal jet. Astrophys. J. 912, 75. DOI. ADS.
Okamoto, T.J., Nakai, H., Keiyama, A., Narukage, N., UeNo, S., Kitai, R., Kurokawa, H., Shibata, K.: 2004, Filament oscillations and Moreton waves associated with EIT waves. Astrophys. J. 608, 1124. DOI. ADS.
Pant, V., Srivastava, A.K., Banerjee, D., Goossens, M., Chen, P.-F., Joshi, N.C., Zhou, Y.-H.: 2015, MHD seismology of a loop-like filament tube by observed kink waves. Res. Astron. Astrophys. 15, 1713. DOI. ADS.
Prialnik, D.: 2000, An Introduction to the Theory of Stellar Structure and Evolution, Cambridge University Press, Cambridge. ADS.
Ramsey, H.E., Smith, S.F.: 1966, Flare-initiated filament oscillations. Astron. J. 71, 197. DOI. ADS.
Robertson, J.A., Priest, E.R.: 1987, Line-tied magnetic reconnection. Solar Phys. 114, 311. DOI. ADS.
Ruderman, M.S., Roberts, B.: 2002, The damping of coronal loop oscillations. Astrophys. J. 577, 475. DOI. ADS.
Schutgens, N.A.J., Tóth, G.: 1999, Numerical simulation of prominence oscillations. Astron. Astrophys. 345, 1038. ADS.
Shen, Y., Liu, Y.: 2012, Evidence for the wave nature of an extreme ultraviolet wave observed by the atmospheric imaging assembly on board the solar dynamics observatory. Astrophys. J. 754, 7. DOI. ADS.
Shen, Y., Ichimoto, K., Ishii, T.T., Tian, Z., Zhao, R., Shibata, K.: 2014a, A chain of winking (oscillating) filaments triggered by an invisible extreme-ultraviolet wave. Astrophys. J. 786, 151. DOI. ADS.
Shen, Y., Liu, Y.D., Chen, P.F., Ichimoto, K.: 2014b, Simultaneous transverse oscillations of a prominence and a filament and longitudinal oscillation of another filament induced by a single shock wave. Astrophys. J. 795, 130. DOI. ADS.
Soler, R., Oliver, R., Ballester, J.L., Goossens, M.: 2009, Damping of filament thread oscillations: effect of the slow continuum. Astrophys. J. Lett. 695, L166. DOI. ADS.
Terradas, J., Soler, R., Luna, M., Oliver, R., Ballester, J.L., Wright, A.N.: 2016, Solar prominences embedded in flux ropes: morphological features and dynamics from 3D MHD simulations. Astrophys. J. 820, 125. DOI. ADS.
Tripathi, D., Isobe, H., Jain, R.: 2009, Large amplitude oscillations in prominences. Space Sci. Rev. 149, 283. DOI. ADS.
van den Oord, G.H.J., Kuperus, M.: 1992, The effect of retardation on the stability of current filaments. Solar Phys. 142, 113. DOI. ADS.
Zhou, Y.H., Xia, C., Keppens, R., Fang, C., Chen, P.F.: 2018, Three-dimensional MHD simulations of solar prominence oscillations in a magnetic flux rope. Astrophys. J. 856, 179. DOI. ADS.
Acknowledgements
We want to thank an anonymous reviewer who helped us to make a significant improvement to this work. E. Zurbriggen is grateful to the FAPESP to have financed this research by the grant 2018/25177-4. M. Cécere, G. Krause, and A. Costa are members of the Carrera del Investigador Científico (CONICET). M. Cécere and G. Krause acknowledge support from ANPCyT under the grant PICT No. 2016-2480. M. Cécere also acknowledges support from the SECYT-UNC grant No. 33620180101147CB. M.V. Sieyra acknowledges support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 724326). C.G.G. Castro thanks CNPq for support with a Productivity Research Fellowship. The research leading to these results has received funding from CAPES grant 88881.310386/2018-01, FAPESP grant 2013/24155-3. E. Zurbriggen and C.G.G. Castro are also grateful to Mackenzie Research Funding Mackpesquisa for the support received. C.G.G. Castro is Correspondent Researcher of the CONICET for the Instituto de Astronomía y Física del Espacio (IAFE), Argentina. Simulations were run on the IATE’s clusters and CRAAM’s cluster wintermute; we thank system managers D. Graña and T. Giorgetti. The software used in this work was developed in part by the DOE NNSA ASC- and DOE Office of Science ASCR-supported Flash Center for Computational Science at the University of Chicago (Flash code). We also thank the VisIt team for developing the graphical tool used in this work (Harrison and Krishnan, 2012).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Disclosure of Potential Conflicts of Interest
The authors declare that they have no conflicts of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article belongs to the Topical Collection:
Magnetohydrodynamic (MHD) Waves and Oscillations in the Sun’s Corona and MHD Coronal Seismology
Guest Editors: Dmitrii Kolotkov and Bo Li
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Zurbriggen, E., Cécere, M., Sieyra, M.V. et al. An MHD Study of Large-Amplitude Oscillations in Solar Filaments. Sol Phys 296, 173 (2021). https://doi.org/10.1007/s11207-021-01908-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11207-021-01908-z


