Skip to main content
Log in

The Effect of Missing Groups in the Calculation of the Solar Irradiance Deficit

Analysis of the Sunspot Areas from the SOON Network

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Sunspot areas are one of the most important indices of solar activity. To obtain an extended time series covering multiple solar cycles, one must combine data from different observatories after a proper comparison and calibration of the individual datasets. We compare the daily and group values of sunspot areas provided by the different stations from the Solar Optical Observing Network, SOON, which are determined using similar instruments and techniques. We investigate if there are systematic differences among the stations and whether the differences in the daily values can be attributed to missing groups in the records or errors in the measurements. We find significant differences among the stations of the SOON network in terms of sizes (average daily and group values), quality of observations and coverage (considering the number of missing groups and data gaps). Our results indicate that calibration factors for daily values can be used with confidence to combine datasets from different stations. However, for some applications which require the location of the sunspot groups, the same correction factors should not be used. We estimate the irradiance deficit due to sunspot through the Photometric Sunspot Index and compare the output from similar datasets to quantify the effect of missing groups. We find differences as high as 150 ppm during the maximum of solar cycle. The effect increases for sunspot groups near the center of the disk accounting for about 80% of the observed differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Akritas, M.G., Bershady, M.A.: 1996, Linear regression for astronomical data with measurement errors and intrinsic scatter. Astrophys. J. 470, 706. DOI. ADS.

    Article  ADS  Google Scholar 

  • Balmaceda, L., Krivova, N.A., Solanki, S.K.: 2007, Reconstruction of solar irradiance using the Group sunspot number. Adv. Space Res. 40, 986. DOI. ADS.

    Article  ADS  Google Scholar 

  • Balmaceda, L.A., Solanki, S.K., Krivova, N.A., Foster, S.: 2009, A homogeneous database of sunspot areas covering more than 130 years. J. Geophys. Res. 114, A07104. DOI. ADS.

    Article  ADS  Google Scholar 

  • Baranyi, T.: 2018, Stable sunspot area level of Debrecen photoheliographic data and multivariate correction factor of SOON data. Solar Phys. 293, 142. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bhowmik, P., Nandy, D.: 2018, Prediction of the strength and timing of sunspot cycle 25 reveal decadal-scale space environmental conditions. Nat. Commun. 9, 5209. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brandt, P.N., Stix, M., Weinhardt, H.: 1994, Modelling solar irradiance variations with an area dependent photometric sunspot index. Solar Phys. 152, 119. DOI. ADS.

    Article  ADS  Google Scholar 

  • Canty, A., Ripley, B.D.: 2017, boot: Bootstrap r (s-plus) functions. R package version 1.3-20.

  • Davison, A.C., Hinkley, D.V.: 1997, Bootstrap Methods and Their Applications, Cambridge University Press, Cambridge ISBN 0-521-57391-2. http://statwww.epfl.ch/davison/BMA/.

    Book  Google Scholar 

  • Eisenhauer, J.G.: 2003, Regression through the origin. Teach. Stat. 25, 76. DOI.

    Article  Google Scholar 

  • Fligge, M., Solanki, S.K.: 1997, Inter-cycle variations of solar irradiance: Sunspot areas as a pointer. Solar Phys. 173, 427. DOI. ADS.

    Article  ADS  Google Scholar 

  • Foukal, P.: 2014, An explanation of the differences between the sunspot area scales of the Royal Greenwich and Mt. Wilson Observatories, and the SOON Program. Solar Phys. 289, 1517. DOI. ADS.

    Article  ADS  Google Scholar 

  • Giersch, O., Kennewell, J., Lynch, M.: 2018, Reanalysis of solar observing optical network sunspot areas. Solar Phys. 293, 138. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: 2010, The solar cycle. Living Rev. Solar Phys. 7, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: 2012, A statistical test of uniformity in solar cycle indices. In: American Astronomical Society Meeting Abstracts #220, American Astronomical Society Meeting Abstracts 220, 206.01. ADS.

    Google Scholar 

  • Hudson, H.S., Silva, S., Woodard, M., Willson, R.C.: 1982, The effects of sunspots on solar irradiance. Solar Phys. 76, 211. DOI. ADS.

    Article  ADS  Google Scholar 

  • Isobe, T., Feigelson, E.D., Akritas, M.G., Babu, G.J.: 1990, Linear regression in astronomy. Astrophys. J. 364, 104. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kopp, G., Lawrence, G., Rottman, G.: 2005, The Total Irradiance Monitor (TIM): Science results. Solar Phys. 230, 129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kopp, G., Lean, J.L.: 2011, A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett. 38, L01706. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krivova, N.A., Balmaceda, L., Solanki, S.K.: 2007, Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron. Astrophys. 467, 335. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mandal, S., Krivova, N.A., Solanki, S.K., Sinha, N., Banerjee, D.: 2020, Sunspot area catalog revisited: Daily cross-calibrated areas since 1874. Astron. Astrophys. 640, A78. DOI. ADS.

    Article  ADS  Google Scholar 

  • Muñoz-Jaramillo, A., Senkpeil, R.R., Longcope, D.W., Tlatov, A.G., Pevtsov, A.A., Balmaceda, L.A., DeLuca, E.E., Martens, P.C.H.: 2015a, The minimum of solar cycle 23: As deep as it could be? Astrophys. J. 804, 68. DOI. ADS.

    Article  ADS  Google Scholar 

  • Muñoz-Jaramillo, A., Senkpeil, R.R., Windmueller, J.C., Amouzou, E.C., Longcope, D.W., Tlatov, A.G., Nagovitsyn, Y.A., Pevtsov, A.A., Chapman, G.A., Cookson, A.M., Yeates, A.R., Watson, F.T., Balmaceda, L.A., DeLuca, E.E., Martens, P.C.H.: 2015b, Small-scale and global dynamos and the area and flux distributions of active regions, sunspot groups, and sunspots: A multi-database study. Astrophys. J. 800, 48. DOI. ADS.

    Article  ADS  Google Scholar 

  • R Core Team: 2017, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna. https://www.R-project.org/.

    Google Scholar 

  • Wickham, H.: 2011, The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1. http://www.jstatsoft.org/v40/i01/.

    Google Scholar 

  • Wickham, H.: 2007, Reshaping data with the reshape package. J. Stat. Softw. 21, 1. http://www.jstatsoft.org/v21/i12/paper.

    Article  Google Scholar 

  • Wickham, H., Henry, L.: 2018, tidyr: Easily tidy data with ‘spread()’ and ‘gather()’ functions. R package version 0.8.1. https://CRAN.R-project.org/package=tidyr.

Download references

Acknowledgements

The authors acknowledge the National Centers for Environmental Information from the National Oceanic and Atmospheric Administration which provides the data used in this work. L.L. is a postdoctoral fellow from CONICET, Argentina. The authors would also like to thank the referee for the valuable comments which helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Leuzzi.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leuzzi, L., Balmaceda, L.A. & Francile, C. The Effect of Missing Groups in the Calculation of the Solar Irradiance Deficit. Sol Phys 296, 149 (2021). https://doi.org/10.1007/s11207-021-01893-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01893-3

Keywords

Navigation