Skip to main content
Log in

DH Type II Radio Bursts During Solar Cycles 23 and 24: Frequency-Dependent Classification and Their Flare-CME Associations

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present the characteristics of DH type II bursts for the Solar Cycles 23 and 24. The bursts are classified according to their end frequencies into three categories: Low-Frequency Group (LFG; 20 kHz ≤ f ≤ 200 kHz), Medium-Frequency Group (MFG; 200 kHz \(< f \leq 1\) MHz), and High-Frequency Group (HFG; 1 MHz \(< f \le 16\) MHz). We find that the sources for LFG, MFG, and HFG events are homogeneously distributed over the active region belt. Our analysis shows a drastic reduction of the DH type II events during Solar Cycle 24, which includes only 35% of the total events (i.e., 179 out of 514). Despite having smaller number of DH type II events in the Solar Cycle 24, it contains a significantly higher fraction of LFG events compared to the previous cycle (32% versus 24%). However, within the LFG group, the cycle 23 exhibits significant dominance of type II bursts that extend below 50 kHz, suggesting rich population of powerful CMEs traveling beyond half of the Sun–Earth distance. The events of LFG group display strongest association with faster and wider (more than 82% events are halo) CMEs, whereas at the source location, they predominantly trigger large M/X class flares (in more than 83% cases). Our analysis also indicates that CME initial speed or flare energetics is partly related to the duration of type II burst and that survival of CME-associated shock is determined by multiple factors/parameters related to CMEs, flares, and state of coronal and interplanetary medium. The profiles relating CME heights with respect to the end frequencies of DH type II bursts suggest that for HFG and MFG categories, the location for majority of CMEs (≈ 65%–70%) is in well compliance with ten-fold Leblanc coronal density model, whereas for LFG events, a lower value of density multiplier (≈ 3) seems to be compatible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

Notes

  1. See http://cdaw.gsfc.nasa.gov/CME_list/radio/waves_type2.html.

  2. See https://swaves.gsfc.nasa.gov/swaves_instr.html.

  3. See http://cdaw.gsfc.nasa.gov/CME_list/.

  4. Source: WDC-SILSO, Royal Observatory of Belgium, Brussels.

  5. Source: Royal Observatory, Greenwich–USAF/NOAA Sunspot Data.

References

  • Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: the radio and plasma wave investigation on the wind spacecraft. Space Sci. Rev. 71, 231. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bougeret, J.L., Goetz, K., Kaiser, M.L., Bale, S.D., Kellogg, P.J., Maksimovic, M., Monge, N., Monson, S.J., Astier, P.L., Davy, S., Dekkali, M., Hinze, J.J., Manning, R.E., Aguilar-Rodriguez, E., Bonnin, X., Briand, C., Cairns, I.H., Cattell, C.A., Cecconi, B., Eastwood, J., Ergun, R.E., Fainberg, J., Hoang, S., Huttunen, K.E.J., Krucker, S., Lecacheux, A., MacDowall, R.J., Macher, W., Mangeney, A., Meetre, C.A., Moussas, X., Nguyen, Q.N., Oswald, T.H., Pulupa, M., Reiner, M.J., Robinson, P.A., Rucker, H., Salem, C., Santolik, O., Silvis, J.M., Ullrich, R., Zarka, P., Zouganelis, I.: 2008, S/WAVES: the radio and plasma wave investigation on the STEREO mission. Space Sci. Rev. 136, 487. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cane, H.V., Sheeley, N.R. Jr., Howard, R.A.: 1987, Energetic interplanetary shocks, radio emission, and coronal mass ejections. J. Geophys. Res. 92, 9869. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cho, K.-S., Bong, S.-C., Kim, Y.-H., Moon, Y.-J., Dryer, M., Shanmugaraju, A., Lee, J., Park, Y.D.: 2008, Low coronal observations of metric type II associated CMEs by MLSO coronameters. Astron. Astrophys. 491, 873. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cho, K.-S., Bong, S.-C., Moon, Y.-J., Shanmugaraju, A., Kwon, R.-Y., Park, Y.D.: 2011, Relationship between multiple type II solar radio bursts and CME observed by STEREO/SECCHI. Astron. Astrophys. 530, A16. DOI. ADS.

    Article  Google Scholar 

  • Cliver, E.W., Kahler, S.W., Reames, D.V.: 2004, Coronal shocks and solar energetic proton events. Astrophys. J. 605, 902. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N.: 2006, Coronal Mass Ejections and Type II Radio Bursts. Geophysical Monograph Series 165, American Geophysica Union, Washington, 207. DOI. ADS.

    Book  Google Scholar 

  • Gopalswamy, N.: 2010, Corona mass ejections: a summary of recent results. In: Dorotovic, I. (ed.) 20th National Sol. Phys. Meeting 20, 108. ADS.

    Google Scholar 

  • Gopalswamy, N.: 2011, Coronal mass ejections and solar radio emissions. In: Rucker, H.O., Kurth, W.S., Louarn, P., Fischer, G. (eds.) Planetary, Solar and Heliospheric Radio Emissions (Phys. Rev. E VII), 325. ADS.

    Google Scholar 

  • Gopalswamy, N., Makela, P.A.: 2018, Properties of DH Type II Radio Bursts and Their Space Weather Implications. arXiv e-prints, arXiv. ADS.

  • Gopalswamy, N., Mäkelä, P., Yashiro, S.: 2019, A catalog of type II radio bursts observed by Wind/WAVES and their statistical properties. Sun Geosph. 14, 111. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2001, Characteristics of coronal mass ejections associated with long-wavelength type II radio bursts. J. Geophys. Res. 106, 29219. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Aguilar-Rodriguez, E., Yashiro, S., Nunes, S., Kaiser, M.L., Howard, R.A.: 2005, Type II radio bursts and energetic solar eruptions. J. Geophys. Res. 110, A12S07. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009, The SOHO/LASCO CME catalog. Earth Moon Planets 104, 295. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Akiyama, S., Yashiro, S., Xie, H., Mäkelä, P., Michalek, G.: 2014, Anomalous expansion of coronal mass ejections during solar cycle 24 and its space weather implications. Geophys. Res. Lett. 41, 2673. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S., Mäkelä, P.: 2015, Properties and geoeffectiveness of magnetic clouds during solar cycles 23 and 24. J. Geophys. Res. 120, 9221. DOI. ADS.

    Article  Google Scholar 

  • Harvey, K.L., Zwaan, C.: 1993, Properties and emergence patterns of bipolar active regions—part one. Solar Phys. 148, 85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Joshi, B., Pant, P.: 2005, Distribution of H\(\alpha \) flares during solar cycle 23. Astron. Astrophys. 431, 359. DOI. ADS.

    Article  ADS  Google Scholar 

  • Joshi, B., Pant, P., Manoharan, P.K.: 2006, Periodicities in sunspot activity during solar cycle 23. Astron. Astrophys. 452, 647. DOI. ADS.

    Article  ADS  Google Scholar 

  • Joshi, B., Ibrahim, M.S., Shanmugaraju, A., Chakrabarty, D.: 2018, A major geoeffective CME from NOAA 12371: initiation, CME-CME interactions, and interplanetary consequences. Solar Phys. 293, 107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kharayat, H., Joshi, B., Chandra, R.: 2021, Radio-loud and radio-quiet CMEs: solar cycle dependency, influence on cosmic ray intensity, and geo-effectiveness. Astrophys. Space Sci. 366, 24. DOI. ADS.

    Article  ADS  Google Scholar 

  • Knock, S.A., Cairns, I.H., Robinson, P.A., Kuncic, Z.: 2003, Theoretically predicted properties of type II radio emission from an interplanetary foreshock. J. Geophys. Res. 108, 1126. DOI. ADS.

    Article  Google Scholar 

  • Leblanc, Y., Dulk, G.A., Bougeret, J.-L.: 1998, Tracing the electron density from the corona to 1 AU. Solar Phys. 183, 165. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mann, G.: 1995, In: Benz, A.O., Krüger, A. (eds.) Theory and Observations of Coronal Shock Waves 444, 183. DOI. ADS.

    Chapter  Google Scholar 

  • Manoharan, P.K., Maia, D., Johri, A., Induja, M.S.: 2016, Interplanetary consequences of coronal mass ejection events occurred during 18-25 June 2015. In: Dorotovic, I., Fischer, C.E., Temmer, M. (eds.) Coimbra Sol. Phys. Meeting: Ground-Based Solar Observations in the Space Instrumentation Era, Astronomical Society of the Pacific Conference Series 504, 59. ADS.

    Google Scholar 

  • Nelson, G.J., Melrose, D.B.: 1985, In: McLean, D.J., Labrum, N.R. (eds.) Type II Bursts, 333. ADS.

    Google Scholar 

  • Owens, M.J., Forsyth, R.J.: 2013, The heliospheric magnetic field. Living Rev. Solar Phys. 10, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pohjolainen, S., van Driel-Gesztelyi, L., Culhane, J.L., Manoharan, P.K., Elliott, H.A.: 2007, CME propagation characteristics from radio observations. Solar Phys. 244, 167. DOI. ADS.

    Article  ADS  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: 1992, Numerical Recipes in FORTRAN. The Art of Scientific Computing. ADS.

    MATH  Google Scholar 

  • Reiner, M.J., Kaiser, M.L.: 1999, High-frequency type II radio emissions associated with shocks driven by coronal mass ejections. J. Geophys. Res. 104, 16979. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reiner, M.J., Kaiser, M.L., Bougeret, J.-L.: 2001, Radio signatures of the origin and propagation of coronal mass ejections through the solar corona and interplanetary medium. J. Geophys. Res. 106, 29989. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reiner, M.J., Kaiser, M.L., Bougeret, J.-L.: 2007, Coronal and interplanetary propagation of CME/shocks from radio, in situ and white-light observations. Astrophys. J. 663, 1369. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shanmugaraju, A., Suresh, K., Vasanth, V., Selvarani, G., Umapathy, S.: 2018, Interplanetary type II radio bursts and their association with CMEs and flares. Astrophys. Space Sci. 363, 126. DOI. ADS.

    Article  ADS  Google Scholar 

  • Suresh, K., Prasanna Subramanian, S., Shanmugaraju, A., Vršnak, B., Umapathy, S.: 2019, Study of interplanetary CMEs/shocks during solar cycle 24 using drag-based model: the role of solar wind. Solar Phys. 294, 47. DOI. ADS.

    Article  ADS  Google Scholar 

  • Syed Ibrahim, M., Joshi, B., Cho, K.-S., Kim, R.-S., Moon, Y.-J.: 2019, Interplanetary coronal mass ejections during solar cycles 23 and 24: Sun–Earth propagation characteristics and consequences at the near-Earth region. Solar Phys. 294, 54. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vizoso, G., Ballester, J.L.: 1990, The North-South asymmetry of sunspots. Astron. Astrophys. 229, 540. ADS.

    ADS  Google Scholar 

  • Vršnak, B., Žic, T., Falkenberg, T.V., Möstl, C., Vennerstrom, S., Vrbanec, D.: 2010, The role of aerodynamic drag in propagation of interplanetary coronal mass ejections. Astron. Astrophys. 512, A43. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T., Möstl, C., Veronig, A., Čalogović, J., Dumbović, M., Lulić, S., Moon, Y.-J., Shanmugaraju, A.: 2013, Propagation of interplanetary coronal mass ejections: the drag-based model. Solar Phys. 285, 295. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wild, J.P., Smerd, S.F., Weiss, A.A.: 1963, Solar bursts. Annu. Rev. Astron. Astrophys. 1, 291. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the WIND/WAVES type II burst catalog, which forms the basis for the present study. The LASCO CME catalog is generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. We further acknowledge the SOHO, STEREO, GOES, and Wind missions for their open data policy. We are grateful to the anonymous referee of the paper for providing constructive comments and suggestions that have significantly enhanced the quality and presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binal D. Patel.

Ethics declarations

Disclosure of Potential Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, B.D., Joshi, B., Cho, KS. et al. DH Type II Radio Bursts During Solar Cycles 23 and 24: Frequency-Dependent Classification and Their Flare-CME Associations. Sol Phys 296, 142 (2021). https://doi.org/10.1007/s11207-021-01890-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01890-6

Keywords

Navigation