Skip to main content

Dispersion of Slow Magnetoacoustic Waves in the Active Region Fan Loops Introduced by Thermal Misbalance

Abstract

Slow magnetoacoustic waves observed in the solar corona are used as seismological probes of plasma parameters. It has been shown that the dispersion properties of such waves can vary significantly under the influence of the wave-induced thermal misbalance. In the current research, we study the effect of misbalance on waves inside the magnetic-flux tube under the second-order thin-flux-tube approximation. Using the parameters of active-region-fan coronal loops, we calculated wave properties such as the phase speed and decrement. It is shown that neglecting thermal misbalance may be the reason for the substantial divergence between seismological and spectrometric estimations of plasma parameters. We also show that the frequency dependence of the phase speed is affected by two features, namely the geometric dispersion and the dispersion caused by the thermal misbalance. In contrast to the phase speed, the wave decrement primarily is affected by the thermal misbalance only. The dependencies of the phase speed and decrement of the slow wave on the magnetic field and tube cross-section are also analysed.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Dahlburg, R.B., Mariska, J.T.: 1988, Influence of heating rate on the condensational instability. Solar Phys. 117, 51. DOI. ADS.

    ADS  Article  Google Scholar 

  2. Del Zanna, G., Dere, K.P., Young, P.R., Landi, E.: 2021, CHIANTI—an atomic database for emission lines. XVI. Version 10, further extensions. Astrophys. J. 909, 38. DOI. ADS.

    ADS  Article  Google Scholar 

  3. Dere, K.P., Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R.: 1997, CHIANTI—an atomic database for emission lines—I. Wavelengths greater than 50 Å. Astron. Astrophys. Suppl. Ser. 125, 149. DOI.

    ADS  Article  Google Scholar 

  4. Duckenfield, T.J., Kolotkov, D.Y., Nakariakov, V.M.: 2021, The effect of the magnetic field on the damping of slow waves in the solar corona. Astron. Astrophys. 646, A155. DOI. ADS.

    ADS  Article  Google Scholar 

  5. Edwin, P.M., Roberts, B.: 1983, Wave propagation in a magnetic cylinder. Solar Phys. 88, 179. DOI. ADS.

    ADS  Article  Google Scholar 

  6. Field, G.B.: 1965, Thermal instability. Astrophys. J. 142, 531. DOI. ADS.

    ADS  Article  Google Scholar 

  7. Gupta, G.R., Banerjee, D., Teriaca, L., Imada, S., Solanki, S.: 2010, Accelerating waves in polar coronal holes as seen by EIS and SUMER. Astrophys. J. 718, 11. DOI.

    ADS  Article  Google Scholar 

  8. Ibanez, S., Miguel, H., Escalona, T., Orlando, B.: 1993, Propagation of hydrodynamic waves in optically thin plasmas. Astrophys. J. 415, 335. DOI. ADS.

    ADS  Article  Google Scholar 

  9. Jess, D.B., Reznikova, V.E., Ryans, R.S.I., Christian, D.J., Keys, P.H., Mathioudakis, M., Mackay, D.H., Krishna Prasad, S., Banerjee, D., Grant, S.D.T., Yau, S., Diamond, C.: 2016, Solar coronal magnetic fields derived using seismology techniques applied to omnipresent sunspot waves. Nat. Phys. 12, 179. DOI. ADS.

    Article  Google Scholar 

  10. Kolotkov, D.Y., Duckenfield, T.J., Nakariakov, V.M.: 2020, Seismological constraints on the solar coronal heating function. Astron. Astrophys. 644, A33. DOI.

    ADS  Article  Google Scholar 

  11. Kolotkov, D.Y., Nakariakov, V.M., Zavershinskii, D.I.: 2019, Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona. Astron. Astrophys. 628, A133. DOI. ADS.

    ADS  Article  Google Scholar 

  12. Krishna Prasad, S., Banerjee, D., Van Doorsselaere, T.: 2014, Frequency-dependent damping in propagating slow magneto-acoustic waves. Astrophys. J. 789, 118. DOI.

    ADS  Article  Google Scholar 

  13. Krishna Prasad, S., Jess, D.B., Van Doorsselaere, T.: 2019, The temperature-dependent damping of propagating slow magnetoacoustic waves. Front. Astron. Space Sci. 6, 57. DOI.

    ADS  Article  Google Scholar 

  14. Krishna Prasad, S., Raes, J.O., Van Doorsselaere, T., Magyar, N., Jess, D.B.: 2018, The polytropic index of solar coronal plasma in sunspot fan loops and its temperature dependence. Astrophys. J. 868, 149. DOI. ADS.

    ADS  Article  Google Scholar 

  15. Marsh, M.S., De Moortel, I., Walsh, R.W.: 2011, Observed damping of the slow magnetoacoustic mode. Astrophys. J. 734, 81. DOI. ADS.

    ADS  Article  Google Scholar 

  16. Marsh, M.S., Walsh, R.W., Plunkett, S.: 2009, Three-dimensional coronal slow modes: toward three-dimensional seismology. Astrophys. J. 697, 1674. DOI. ADS.

    ADS  Article  Google Scholar 

  17. Molevich, N.E., Oraevskii, A.N.: 1988, Second viscosity in thermodynamically nonequilibrium media. Zh. Eksp. Teor. Fiz 94, 128 [J. Exp. Theor. Phys. 67, 504 (1988)].

    ADS  Google Scholar 

  18. Nakariakov, V.M., Kolotkov, D.Y.: 2020, Magnetohydrodynamic waves in the solar corona. Annu. Rev. Astron. Astrophys. 58, 441. DOI.

    ADS  Article  Google Scholar 

  19. Pant, V., Tiwari, A., Yuan, D., Banerjee, D.: 2017, First imaging observation of standing slow wave in coronal fan loops. Astrophys. J. Lett. 847, L5. DOI.

    ADS  Article  Google Scholar 

  20. Parker, E.N.: 1953, Instability of thermal fields. Astrophys. J. 117, 431. DOI. ADS.

    ADS  Article  Google Scholar 

  21. Prasad, A., Srivastava, A.K., Wang, T.: 2021, Effect of thermal conductivity, compressive viscosity and radiative cooling on the phase shift of propagating slow waves with and without heating–cooling imbalance. Solar Phys. 296, 105. DOI.

    ADS  Article  Google Scholar 

  22. Reale, F.: 2016, Plasma sloshing in pulse-heated solar and stellar coronal loops. Astrophys. J. Lett. 826, L20. DOI.

    ADS  Article  Google Scholar 

  23. Rosner, R., Tucker, W.H., Vaiana, G.S.: 1978, Dynamics of the quiescent solar corona. Astrophys. J. 220, 643. DOI. ADS.

    ADS  Article  Google Scholar 

  24. Van Doorsselaere, T., Wardle, N., Del Zanna, G., Jansari, K., Verwichte, E., Nakariakov, V.M.: 2011, The first measurement of the adiabatic index in the solar corona using time-dependent spectroscopy of Hinode/EIS observations. Astrophys. J. Lett. 727, L32. DOI. ADS.

    ADS  Article  Google Scholar 

  25. Wang, T.: 2011, Standing slow-mode waves in hot coronal loops: observations, modeling, and coronal seismology. Space Sci. Rev. 158, 397. DOI.

    ADS  Article  Google Scholar 

  26. Yuan, D., Nakariakov, V.M.: 2012, Measuring the apparent phase speed of propagating EUV disturbances. Astron. Astrophys. 543, A9. DOI. ADS.

    ADS  Article  Google Scholar 

  27. Zaitsev, V.V., Stepanov, A.V.: 1975, On the origin of pulsations of type IV solar radio emission. Plasma cylinder oscillations (I). Issled. Geomagn. Aèron. Fiz. Solntsa 37, 3. ADS.

    ADS  Google Scholar 

  28. Zaitsev, V.V., Stepanov, A.V.: 1982, On the origin of the hard X-ray pulsations during solar flares. Sov. Astron. Lett. 8, 132. ADS.

    ADS  Google Scholar 

  29. Zavershinskii, D.I., Kolotkov, D.Y., Nakariakov, V.M., Molevich, N.E., Ryashchikov, D.S.: 2019, Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance. Phys. Plasmas 26, 082113. DOI.

    ADS  Article  Google Scholar 

  30. Zavershinskii, D., Kolotkov, D., Riashchikov, D., Molevich, N.: 2021, Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance. Solar Phys. 296, 96. DOI.

    ADS  Article  Google Scholar 

  31. Zhugzhda, Y.D.: 1996, Force-free thin flux tubes: basic equations and stability. Phys. Plasmas 3, 10. DOI.

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The study was supported in part by the Ministry of Education and Science of Russia by State assignment to educational and research institutions under Project No. FSSS-2020-0014 and No. 0023-2019-0003, and by RFBR, project number 20-32-90018. CHIANTI is a collaborative project involving George Mason University, the University of Michigan (USA), University of Cambridge (UK), and NASA Goddard Space Flight Center (USA).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. A. Belov.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Magnetohydrodynamic (MHD) Waves and Oscillations in the Sun’s Corona and MHD Coronal Seismology

Guest Editors: Dmitrii Kolotkov and Bo Li

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belov, S.A., Molevich, N.E. & Zavershinskii, D.I. Dispersion of Slow Magnetoacoustic Waves in the Active Region Fan Loops Introduced by Thermal Misbalance. Sol Phys 296, 122 (2021). https://doi.org/10.1007/s11207-021-01868-4

Download citation

Keywords

  • Waves, magnetohydrodynamic
  • Coronal seismology
  • Oscillations, solar