Skip to main content

Probabilistic Drag-Based Ensemble Model (DBEM) Evaluation for Heliospheric Propagation of CMEs

Abstract

The Drag-based Model (DBM) is a 2D analytical model for heliospheric propagation of Coronal Mass Ejections (CMEs) in ecliptic plane predicting the CME arrival time and speed at Earth or any other given target in the solar system. It is based on the equation of motion and depends on initial CME parameters, background solar wind speed, \(w\) and the drag parameter \(\gamma \). A very short computational time of DBM (< 0.01 s) allowed us to develop the Drag-Based Ensemble Model (DBEM) that takes into account the variability of model input parameters by making an ensemble of n different input parameters to calculate the distribution and significance of the DBM results. Thus the DBEM is able to calculate the most likely CME arrival times and speeds, quantify the prediction uncertainties and determine the confidence intervals. A new DBEMv3 version is described in detail and evaluated for the first time determining the DBEMv3 performance and errors by using various CME–ICME lists and it is compared with previous DBEM versions, ICME being a short-hand for interplanetary CME. The analysis to find the optimal drag parameter \(\gamma \) and ambient solar wind speed \(w\) showed that somewhat higher values (\(\gamma \approx 0.3 \times 10^{-7}\) km−1, \(w \approx \) 425 km s−1) for both of these DBEM input parameters should be used for the evaluation than the previously employed ones. Based on the evaluation performed for 146 CME–ICME pairs, the DBEMv3 performance with mean error (ME) of −11.3 h, mean absolute error (MAE) of 17.3 h was obtained. There is a clear bias towards the negative prediction errors where the fast CMEs are predicted to arrive too early, probably due to the model physical limitations and input errors (e.g. CME launch speed). This can be partially reduced by using larger values for \(\gamma \) resulting in smaller prediction errors (\(\mathrm{ME} =-3.9\) h, MAE = 14.5 h) but at the cost of larger prediction errors for single fast CMEs as well as larger CME arrival speed prediction errors. DBEMv3 showed also slight improvement in the performance for all calculated output parameters compared to the previous DBEM versions.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Notes

  1. 1.

    See http://swe.ssa.esa.int/heliospheric-weather.

  2. 2.

    See http://comesep.aeronomy.be.

  3. 3.

    See https://ccmc.gsfc.nasa.gov.

  4. 4.

    See http://oh.geof.unzg.hr.

  5. 5.

    See https://ssd.jpl.nasa.gov/horizons.cgi.

  6. 6.

    See http://swe.ssa.esa.int/heliospheric-weather.

  7. 7.

    See http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm.

  8. 8.

    The complete list of all analyzed events is available as table on DOI.

  9. 9.

    See http://swe.ssa.esa.int/heliospheric-weather.

References

  1. Amerstorfer, T., Hinterreiter, J., Reiss, M.A., Möstl, C., Davies, J.A., Bailey, R.L., Weiss, A.J., Dumbović, M., Bauer, M., Amerstorfer, U.V., Harrison, R.A.: 2021, Evaluation of CME arrival prediction using ensemble modeling based on heliospheric imaging observations. Space Weather 19, e02553. DOI. ADS.

    Article  Google Scholar 

  2. Boteler, D.H., Pirjola, R.J., Nevanlinna, H.: 1998, The effects of geomagnetic disturbances on electrical systems at the Earth’s surface. Adv. Space Res. 22, 17. DOI. ADS.

    ADS  Article  Google Scholar 

  3. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADS.

    ADS  Article  Google Scholar 

  4. Brueckner, G.E., Delaboudiniere, J.-P., Howard, R.A., Paswaters, S.E., St. Cyr, O.C., Schwenn, R., Lamy, P., Simnett, G.M., Thompson, B., Wang, D.: 1998, Geomagnetic storms caused by coronal mass ejections (CMEs): March 1996 through June 1997. Geophys. Res. Lett. 25, 3019. DOI. ADS.

    ADS  Article  Google Scholar 

  5. Cargill, P.J., Chen, J., Spicer, D.S., Zalesak, S.T.: 1996, Magnetohydrodynamic simulations of the motion of magnetic flux tubes through a magnetized plasma. J. Geophys. Res. 101, 4855. DOI. ADS.

    ADS  Article  Google Scholar 

  6. Cid, C., Palacios, J., Saiz, E., Guerrero, A., Cerrato, Y.: 2014, On extreme geomagnetic storms. J. Space Weather Space Clim. 4, A28. DOI. ADS.

    ADS  Article  Google Scholar 

  7. Corona-Romero, P., Gonzalez-Esparza, J.A., Aguilar-Rodriguez, E., De-la-Luz, V., Mejia-Ambriz, J.C.: 2015, Kinematics of ICMEs/shocks: blast wave reconstruction using Type-II emissions. Solar Phys. 290, 2439. DOI. ADS.

    ADS  Article  Google Scholar 

  8. Detman, T., Smith, Z., Dryer, M., Fry, C.D., Arge, C.N., Pizzo, V.: 2006, A hybrid heliospheric modeling system: background solar wind. J. Geophys. Res. 111, A07102. DOI. ADS.

    ADS  Article  Google Scholar 

  9. Dierckxsens, M., Tziotziou, K., Dalla, S., Patsou, I., Marsh, M.S., Crosby, N.B., Malandraki, O., Tsiropoula, G.: 2015, Relationship between solar energetic particles and properties of flares and CMEs: statistical analysis of Solar Cycle 23 events. Solar Phys. 290, 841. DOI. ADS.

    ADS  Article  Google Scholar 

  10. Dumbović, M., Srivastava, N., Rao, Y.K., Vršnak, B., Devos, A., Rodriguez, L.: 2017, Validation of the CME geomagnetic forecast alerts under the COMESEP alert system. Solar Phys. 292, 96. DOI. ADS.

    ADS  Article  Google Scholar 

  11. Dumbović, M., Čalogović, J., Vršnak, B., Temmer, M., Mays, M.L., Veronig, A., Piantschitsch, I.: 2018, The Drag-based Ensemble Model (DBEM) for coronal mass ejection propagation. Astrophys. J. 854, 180. DOI. ADS.

    ADS  Article  Google Scholar 

  12. Dumbović, M., Guo, J., Temmer, M., Mays, M.L., Veronig, A., Heinemann, S.G., Dissauer, K., Hofmeister, S., Halekas, J., Möstl, C., Amerstorfer, T., Hinterreiter, J., Banjac, S., Herbst, K., Wang, Y., Holzknecht, L., Leitner, M., Wimmer–Schweingruber, R.F.: 2019, Unusual plasma and particle signatures at Mars and STEREO-A related to CME-CME interaction. Astrophys. J. 880, 18. DOI. ADS.

    ADS  Article  Google Scholar 

  13. Dumbović, M., Čalogović, J., Martinić, K., Vršnak, B., Sudar, D., Temmer, M., Veronig, A.: 2021, Drag-based model (DBM) tools for forecast of coronal mass ejection arrival time and speed. Front. Astron. Space Sci. 8, 58. DOI. https://www.frontiersin.org/article/10.3389/fspas.2021.639986.

    ADS  Article  Google Scholar 

  14. Fry, C.D., Sun, W., Deehr, C.S., Dryer, M., Smith, Z., Akasofu, S.-I., Tokumaru, M., Kojima, M.: 2001, Improvements to the HAF solar wind model for space weather predictions. J. Geophys. Res. 106, 20985. DOI. ADS.

    ADS  Article  Google Scholar 

  15. Gopalswamy, N., Lara, A., Lepping, R.P., Kaiser, M.L., Berdichevsky, D., St. Cyr, O.C.: 2000, Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett. 27, 145. DOI. ADS.

    ADS  Article  Google Scholar 

  16. Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M.L., Howard, R.A.: 2001, Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. 106, 29207. DOI. ADS.

    ADS  Article  Google Scholar 

  17. Gopalswamy, N., Yashiro, S., Lara, A., Kaiser, M.L., Thompson, B.J., Gallagher, P.T., Howard, R.A.: 2003, Large solar energetic particle events of cycle 23: a global view. Geophys. Res. Lett. 30, 8015. DOI. ADS.

    ADS  Article  Google Scholar 

  18. Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009, The SOHO/LASCO CME catalog. Earth Moon Planets 104, 295. DOI. ADS.

    ADS  Article  Google Scholar 

  19. Gosling, J.T., McComas, D.J., Phillips, J.L., Bame, S.J.: 1991, Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res. 96, 7831. DOI. ADS.

    ADS  Article  Google Scholar 

  20. Hess, P., Zhang, J.: 2014, Stereoscopic study of the kinematic evolution of a coronal mass ejection and its driven shock from the Sun to the Earth and the prediction of their arrival times. Astrophys. J. 792, 49. DOI. ADS.

    ADS  Article  Google Scholar 

  21. Hess, P., Zhang, J.: 2015, Predicting CME ejecta and sheath front arrival at L1 with a data-constrained physical model. Astrophys. J. 812, 144. DOI. ADS.

    ADS  Article  Google Scholar 

  22. Jang, S., Moon, Y.-J., Kim, R.-S., Lee, H., Cho, K.-S.: 2016, Comparison between 2D and 3D parameters of 306 front-side halo CMEs from 2009 to 2013. Astrophys. J. 821, 95. DOI. ADS.

    ADS  Article  Google Scholar 

  23. Kilpua, E., Koskinen, H.E.J., Pulkkinen, T.I.: 2017, Coronal mass ejections and their sheath regions in interplanetary space. Living Rev. Solar Phys. 14, 5. DOI. ADS.

    ADS  Article  Google Scholar 

  24. Koskinen, H.E.J., Huttunen, K.E.J.: 2006, Geoeffectivity of coronal mass ejections. Space Sci. Rev. 124, 169. DOI. ADS.

    ADS  Article  Google Scholar 

  25. Koskinen, H.E.J., Baker, D.N., Balogh, A., Gombosi, T., Veronig, A., von Steiger, R.: 2017, Achievements and challenges in the science of space weather. Space Sci. Rev. 212, 1137. DOI. ADS.

    ADS  Article  Google Scholar 

  26. Lamy, P.L., Floyd, O., Boclet, B., Wojak, J., Gilardy, H., Barlyaeva, T.: 2019, Coronal mass ejections over Solar Cycles 23 and 24. Space Sci. Rev. 215, 39. DOI. ADS.

    ADS  Article  Google Scholar 

  27. Liu, Y.D., Luhmann, J.G., Lugaz, N., Möstl, C., Davies, J.A., Bale, S.D., Lin, R.P.: 2013, On Sun-to-Earth propagation of coronal mass ejections. Astrophys. J. 769, 45. DOI. ADS.

    ADS  Article  Google Scholar 

  28. Liu, Y.D., Luhmann, J.G., Kajdič, P., Kilpua, E.K.J., Lugaz, N., Nitta, N.V., Möstl, C., Lavraud, B., Bale, S.D., Farrugia, C.J., Galvin, A.B.: 2014, Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nat. Commun. 5, 3481. DOI. ADS.

    ADS  Article  Google Scholar 

  29. Liu, Y.D., Hu, H., Wang, C., Luhmann, J.G., Richardson, J.D., Yang, Z., Wang, R.: 2016, On Sun-to-Earth propagation of coronal mass ejections: II. Slow events and comparison with others. Astrophys. J. Suppl. 222, 23. DOI. ADS.

    ADS  Article  Google Scholar 

  30. Mays, M.L., Taktakishvili, A., Pulkkinen, A., MacNeice, P.J., Rastätter, L., Odstrcil, D., Jian, L.K., Richardson, I.G., LaSota, J.A., Zheng, Y., Kuznetsova, M.M.: 2015, Ensemble modeling of CMEs using the WSA-ENLIL+Cone model. Solar Phys. 290, 1775. DOI. ADS.

    ADS  Article  Google Scholar 

  31. Napoletano, G., Forte, R., Moro, D.D., Pietropaolo, E., Giovannelli, L., Berrilli, F.: 2018, A probabilistic approach to the drag-based model. J. Space Weather Space Clim. 8, A11. DOI. ADS.

    ADS  Article  Google Scholar 

  32. Odstrcil, D., Riley, P., Zhao, X.P.: 2004, Numerical simulation of the 12 May 1997 interplanetary CME event. J. Geophys. Res. 109, A02116. DOI. ADS.

    ADS  Article  Google Scholar 

  33. Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C. Jr., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the wind spacecraft. Space Sci. Rev. 71, 55. DOI. ADS.

    ADS  Article  Google Scholar 

  34. Owens, M., Cargill, P.: 2004, Predictions of the arrival time of Coronal Mass Ejections at 1AU: an analysis of the causes of errors. Ann. Geophys. 22, 661. DOI. ADS.

    ADS  Article  Google Scholar 

  35. Paouris, E., Mavromichalaki, H.: 2017, Effective acceleration model for the arrival time of interplanetary shocks driven by Coronal Mass Ejections. Solar Phys. 292, 180. DOI. ADS.

    ADS  Article  Google Scholar 

  36. Paouris, E., Čalogović, J., Dumbović, M., Mays, M.L., Vourlidas, A., Papaioannou, A., Anastasiadis, A., Balasis, G.: 2021, Propagating conditions and the time of icme arrival: a comparison of the effective acceleration model with enlil and dbem models. Solar Phys. 296, 12. DOI.

    ADS  Article  Google Scholar 

  37. Pizzo, V., Millward, G., Parsons, A., Biesecker, D., Hill, S., Odstrcil, D.: 2011, Wang-Sheeley-Arge-Enlil Cone model transitions to operations. Space Weather 9, 03004. DOI. ADS.

    ADS  Article  Google Scholar 

  38. Pomoell, J., Poedts, S.: 2018, EUHFORIA: European heliospheric forecasting information asset. J. Space Weather Space Clim. 8, A35. DOI. ADS.

    ADS  Article  Google Scholar 

  39. Reiner, M.J., Kaiser, M.L., Bougeret, J.-L.: 2007, Coronal and interplanetary propagation of CME/shocks from radio, in situ and white-light observations. Astrophys. J. 663, 1369. DOI. ADS.

    ADS  Article  Google Scholar 

  40. Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during Solar Cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys. 264, 189. DOI. ADS.

    ADS  Article  Google Scholar 

  41. Richardson, I.G., Cane, H.V.: 2012, Solar wind drivers of geomagnetic storms during more than four solar cycles. J. Space Weather Space Clim. 2, A01. DOI. ADS.

    Article  Google Scholar 

  42. Richardson, I.G., Cliver, E.W., Cane, H.V.: 2001, Sources of geomagnetic storms for solar minimum and maximum conditions during 1972–2000. Geophys. Res. Lett. 28, 2569. DOI. ADS.

    ADS  Article  Google Scholar 

  43. Riley, P., Mays, M.L., Andries, J., Amerstorfer, T., Biesecker, D., Delouille, V., Dumbović, M., Feng, X., Henley, E., Linker, J.A., Möstl, C., Nuñez, M., Pizzo, V., Temmer, M., Tobiska, W.K., Verbeke, C., West, M.J., Zhao, X.: 2018, Forecasting the arrival time of coronal mass ejections: analysis of the CCMC CME scoreboard. Space Weather 16, 1245. DOI. ADS.

    ADS  Article  Google Scholar 

  44. Rodríguez Gómez, J.M., Podladchikova, T., Veronig, A., Ruzmaikin, A., Feynman, J., Petrukovich, A.: 2020, Clustering of fast coronal mass ejections during Solar Cycles 23 and 24 and the implications for CME-CME interactions. Astrophys. J. 899, 47. DOI. ADS.

    ADS  Article  Google Scholar 

  45. Rollett, T., Möstl, C., Isavnin, A., Davies, J.A., Kubicka, M., Amerstorfer, U.V., Harrison, R.A.: 2016, ElEvoHI: a novel CME prediction tool for heliospheric imaging combining an elliptical front with drag-based model fitting. Astrophys. J. 824, 131. DOI. ADS.

    ADS  Article  Google Scholar 

  46. Sachdeva, N., Subramanian, P., Colaninno, R., Vourlidas, A.: 2015, CME propagation: where does aerodynamic drag ’Take over’? Astrophys. J. 809, 158. DOI. ADS.

    ADS  Article  Google Scholar 

  47. Sachdeva, N., Subramanian, P., Vourlidas, A., Bothmer, V.: 2017, CME dynamics using STEREO and LASCO observations: the relative importance of Lorentz forces and solar wind drag. Solar Phys. 292, 118. DOI. ADS.

    ADS  Article  Google Scholar 

  48. Schrijver, C.J., Mitchell, S.D.: 2013, Disturbances in the US electric grid associated with geomagnetic activity. J. Space Weather Space Clim. 3, A19. DOI. ADS.

    ADS  Article  Google Scholar 

  49. Schrijver, C.J., Kauristie, K., Aylward, A.D., Denardini, C.M., Gibson, S.E., Glover, A., Gopalswamy, N., Grande, M., Hapgood, M., Heynderickx, D., Jakowski, N., Kalegaev, V.V., Lapenta, G., Linker, J.A., Liu, S., Mandrini, C.H., Mann, I.R., Nagatsuma, T., Nandy, D., Obara, T., Paul O’Brien, T., Onsager, T., Opgenoorth, H.J., Terkildsen, M., Valladares, C.E., Vilmer, N.: 2015, Understanding space weather to shield society: a global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv. Space Res. 55, 2745. DOI. ADS.

    ADS  Article  Google Scholar 

  50. Smart, D.F., Shea, M.A.: 1985, A simplified model for timing the arrival of solar flare-initiated shocks. J. Geophys. Res. 90, 183. DOI. ADS.

    ADS  Article  Google Scholar 

  51. Srivastava, N., Venkatakrishnan, P.: 2004, Solar and interplanetary sources of major geomagnetic storms during 1996–2002. J. Geophys. Res. 109, A10103. DOI. ADS.

    ADS  Article  Google Scholar 

  52. Sudar, D., Vršnak, B., Dumbović, M.: 2016, Predicting coronal mass ejections transit times to Earth with neural network. Mon. Not. Roy. Astron. Soc. 456, 1542. DOI. ADS.

    ADS  Article  Google Scholar 

  53. Szabo, A.: 2015, NASA Wind Satellite (1994), 141. DOI. ADS.

    Book  Google Scholar 

  54. Takahashi, T., Shibata, K.: 2017, Sheath-accumulating propagation of interplanetary coronal mass ejection. Astrophys. J. Lett. 837, L17. DOI. ADS.

    ADS  Article  Google Scholar 

  55. Temmer, M., Nitta, N.V.: 2015, Interplanetary propagation behavior of the fast coronal mass ejection on 23 July 2012. Solar Phys. 290, 919. DOI. ADS.

    ADS  Article  Google Scholar 

  56. Temmer, M., Rollett, T., Möstl, C., Veronig, A.M., Vršnak, B., Odstrčil, D.: 2011, Influence of the ambient solar wind flow on the propagation behavior of interplanetary coronal mass ejections. Astrophys. J. 743, 101. DOI. ADS.

    ADS  Article  Google Scholar 

  57. Temmer, M., Vršnak, B., Rollett, T., Bein, B., de Koning, C.A., Liu, Y., Bosman, E., Davies, J.A., Möstl, C., Žic, T., Veronig, A.M., Bothmer, V., Harrison, R., Nitta, N., Bisi, M., Flor, O., Eastwood, J., Odstrcil, D., Forsyth, R.: 2012, Characteristics of kinematics of a coronal mass ejection during the 2010 August 1 CME-CME interaction event. Astrophys. J. 749, 57. DOI. ADS.

    ADS  Article  Google Scholar 

  58. Temmer, M., Reiss, M.A., Nikolic, L., Hofmeister, S.J., Veronig, A.M.: 2017, Preconditioning of interplanetary space due to transient CME disturbances. Astrophys. J. 835, 141. DOI. ADS.

    ADS  Article  Google Scholar 

  59. Thernisien, A.: 2011, Implementation of the graduated cylindrical shell model for the three-dimensional reconstruction of coronal mass ejections. Astrophys. J. Suppl. 194, 33. DOI. ADS.

    ADS  Article  Google Scholar 

  60. Thernisien, A.F.R., Howard, R.A., Vourlidas, A.: 2006, Modeling of flux rope coronal mass ejections. Astrophys. J. 652, 763. DOI. ADS.

    ADS  Article  Google Scholar 

  61. Thernisien, A., Vourlidas, A., Howard, R.A.: 2009, Forward modeling of coronal mass ejections using STEREO/SECCHI data. Solar Phys. 256, 111. DOI. ADS.

    ADS  Article  Google Scholar 

  62. Verbeke, C., Mays, M.L., Temmer, M., Bingham, S., Steenburgh, R., Dumbović, M., Núñez, M., Jian, L.K., Hess, P., Wiegand, C., Taktakishvili, A., Andries, J.: 2019, Benchmarking CME arrival time and impact: progress on metadata, metrics, and events. Space Weather 17, 6. DOI. ADS.

    ADS  Article  Google Scholar 

  63. Vourlidas, A., Patsourakos, S., Savani, N.P.: 2019, Predicting the geoeffective properties of coronal mass ejections: current status, open issues and path forward. Phil. Trans. Roy. Soc. London Ser. A, Math. Phys. Sci. 377, 20180096. DOI. ADS.

    ADS  Article  Google Scholar 

  64. Vršnak, B.: 2001, Dynamics of solar coronal eruptions. J. Geophys. Res. 106, 25249. DOI. ADS.

    ADS  Article  Google Scholar 

  65. Vršnak, B., Žic, T.: 2007, Transit times of interplanetary coronal mass ejections and the solar wind speed. Astron. Astrophys. 472, 937. DOI. ADS.

    ADS  Article  Google Scholar 

  66. Vršnak, B., Ruždjak, D., Sudar, D., Gopalswamy, N.: 2004, Kinematics of coronal mass ejections between 2 and 30 solar radii. What can be learned about forces governing the eruption? Astron. Astrophys. 423, 717. DOI. ADS.

    ADS  Article  Google Scholar 

  67. Vršnak, B., Žic, T., Falkenberg, T.V., Möstl, C., Vennerstrom, S., Vrbanec, D.: 2010, The role of aerodynamic drag in propagation of interplanetary coronal mass ejections. Astron. Astrophys. 512, A43. DOI. ADS.

    ADS  Article  Google Scholar 

  68. Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T., Möstl, C., Veronig, A., Čalogović, J., Dumbović, M., Lulić, S., Moon, Y.-J., Shanmugaraju, A.: 2013, Propagation of interplanetary coronal mass ejections: the drag-based model. Solar Phys. 285, 295. DOI. ADS.

    ADS  Article  Google Scholar 

  69. Vršnak, B., Temmer, M., Žic, T., Taktakishvili, A., Dumbović, M., Möstl, C., Veronig, A.M., Mays, M.L., Odstrčil, D.: 2014, Heliospheric propagation of coronal mass ejections: comparison of numerical WSA-ENLIL+Cone model and analytical drag-based model. Astrophys. J. Suppl. 213, 21. DOI. ADS.

    ADS  Article  Google Scholar 

  70. Wold, A.M., Mays, M.L., Taktakishvili, A.r., Jian, L.K., Odstrcil, D., MacNeice, P.: 2018, Verification of real-time WSA-ENLIL+Cone simulations of CME arrival-time at the CCMC from 2010 to 2016. J. Space Weather Space Clim. 8, A17. DOI. ADS.

    ADS  Article  Google Scholar 

  71. Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, A07105. DOI. ADS.

    ADS  Article  Google Scholar 

  72. Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (\(\mathrm{Dst}\leq -100\) nT) during 1996–2005. J. Geophys. Res. 112, A10102. DOI. ADS.

    ADS  Article  Google Scholar 

  73. Zhao, X., Dryer, M.: 2014, Current status of CME/shock arrival time prediction. Space Weather 12, 448. DOI. ADS.

    ADS  Article  Google Scholar 

  74. Žic, T., Vršnak, B., Temmer, M.: 2015, Heliospheric propagation of coronal mass ejections: drag-based model fitting. Astrophys. J. Suppl. 218, 32. DOI. ADS.

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the EU H2020 grant agreement No. 824135 (SOLARNET) and support by the Croatian Science Foundation under the project 7549 (MSOC). M.D. and B.V. acknowledge support by the Croatian Science Foundation under the project IP-2020-02-9893 (ICOHOSS).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jaša Čalogović.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Čalogović, J., Dumbović, M., Sudar, D. et al. Probabilistic Drag-Based Ensemble Model (DBEM) Evaluation for Heliospheric Propagation of CMEs. Sol Phys 296, 114 (2021). https://doi.org/10.1007/s11207-021-01859-5

Download citation

Keywords

  • Coronal mass ejections
  • Initiation and propagation
  • Solar wind