Longitudinal Plasma Motions Generated by Shear Alfvén Waves in Plasma with Thermal Misbalance

Abstract

Compressional plasma perturbations may cause thermal misbalance between plasma-heating and -cooling processes. This misbalance significantly affects the dispersion properties of compressional waves providing a feedback between the perturbations and plasmas. It has been shown that Alfvén waves may induce longitudinal (compressional) plasma motions. In the present study, we analyze the effects of thermal misbalance caused by longitudinal plasma motions induced by shear Alfvén waves. We show that thermal misbalance leads to appearance of exponential bulk flows, which themselves modify the Alfvén-induced plasma motions. In the case of sinusoidal Alfvén waves, we show how the amplitude and phase shift of induced longitudinal motions gain dependence on the Alfvén wave frequency while shedding light on its functionality. This feature has been investigated analytically in application to coronal conditions. We also consider the evolution of longitudinal plasma motions induced by the shear sinusoidal Alfvén wave by numerical methods before comparing the results obtained with our presented analytical predictions to justify the model under consideration in the present study.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

References

  1. Alfvén, H.: 1942, Existence of electromagnetic-hydrodynamic waves. Nature 150, 405. DOI. ADS.

    ADS  Article  Google Scholar 

  2. Antolin, P.: 2020, Thermal instability and non-equilibrium in solar coronal loops: from coronal rain to long-period intensity pulsations. Comm. Plasma Phys. Control. Fusion 62, 014016. DOI. ADS.

    ADS  Article  Google Scholar 

  3. Banerjee, D., Pérez-Suárez, D., Doyle, J.G.: 2009, Signatures of Alfvén waves in the polar coronal holes as seen by EIS/Hinode. Astron. Astrophys. 501, L15. DOI. ADS.

    ADS  Article  Google Scholar 

  4. Belov, S.A., Molevich, N.E., Zavershinskii, D.I.: 2018, Amplification of Alfvén waves due to nonlinear interaction with a fast magnetoacoustic wave in acoustically active conductive media. Tech. Phys. Lett. 44, 199. DOI. ADS.

    ADS  Article  Google Scholar 

  5. Belov, S., Molevich, N., Zavershinskii, D.: 2019a, Propagation of nonlinear Alfvén waves in heat-releasing plasma. Phys. Scr. 94, 105605. DOI. ADS.

    ADS  Article  Google Scholar 

  6. Belov, S.A., Molevich, N.E., Zavershinskii, D.I.: 2019b, Alfvén wave amplification as a result of parametric quasi-resonant interaction with magnetoacoustic waves in heat-releasing isentropically unstable plasma. Russ. Phys. J. 62, 179. DOI. ADS.

    Article  Google Scholar 

  7. Belov, S., Molevich, N., Zavershinskii, D.: 2020, Thermal misbalance influence on the nonlinear shear Alfvén waves under solar atmosphere conditions. Solar Phys. 295, 160. DOI. ADS.

    ADS  Article  Google Scholar 

  8. Boris, J.P., Book, D.L.: 1973, Flux-corrected transport. I. Shasta, a fluid transport algorithm that works. J. Comput. Phys. 11, 38. DOI.

    ADS  Article  MATH  Google Scholar 

  9. Chin, R., Verwichte, E., Rowlands, G., Nakariakov, V.M.: 2010, Self-organization of magnetoacoustic waves in a thermally unstable environment. Phys. Plasmas 17, 032107. DOI. ADS.

    ADS  Article  Google Scholar 

  10. Claes, N., Keppens, R.: 2019, Thermal stability of magnetohydrodynamic modes in homogeneous plasmas. Astron. Astrophys. 624, A96. DOI. ADS.

    ADS  Article  Google Scholar 

  11. Craig, I.J.D., Fruit, G.: 2005, Wave energy dissipation by phase mixing in magnetic coronal plasmas. Astron. Astrophys. 440, 357. DOI. ADS.

    ADS  Article  Google Scholar 

  12. Del Zanna, G., Dere, K.P., Young, P.R., Landi, E.: 2021, CHIANTI—an atomic database for emission lines. XVI. Version 10, further extensions. Astrophys. J. 909, 38. DOI. ADS.

    ADS  Article  Google Scholar 

  13. Dere, K.P., Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R.: 1997, Chianti - an atomic database for emission lines - I. Wavelengths greater than 50 Å. Astron. Astrophys. Suppl. Ser. 125, 149. DOI.

    ADS  Article  Google Scholar 

  14. Duckenfield, T.J., Kolotkov, D.Y., Nakariakov, V.M.: 2021, The effect of the magnetic field on the damping of slow waves in the solar corona. Astron. Astrophys. 646, A155. DOI. ADS.

    ADS  Article  Google Scholar 

  15. Farahani, S.V., Hejazi, S.M., Boroomand, M.R.: 2021, Torsional Alfvén wave cascade and shocks evolving in solar jets. Astrophys. J. 906, 70. DOI. ADS.

    ADS  Article  Google Scholar 

  16. Field, G.B.: 1965, Thermal instability. Astrophys. J. 142, 531. DOI. ADS.

    ADS  Article  Google Scholar 

  17. Kolotkov, D.Y., Duckenfield, T.J., Nakariakov, V.M.: 2020, Seismological constraints on the solar coronal heating function. Astron. Astrophys. 644, A33. DOI.

    ADS  Article  Google Scholar 

  18. Kolotkov, D.Y., Nakariakov, V.M., Zavershinskii, D.I.: 2019, Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona. Astron. Astrophys. 628, A133. DOI. ADS.

    ADS  Article  Google Scholar 

  19. McLaughlin, J.A., De Moortel, I., Hood, A.W.: 2011, Phase mixing of nonlinear visco-resistive Alfvén waves. Astron. Astrophys. 527, A149. DOI. ADS.

    Article  MATH  Google Scholar 

  20. Molevich, N.: 2001, Excitation of the opposite acoustic flows in thermodynamically nonequilibrium gaseous media. Tech. Phys. Lett. 27, 900.

    ADS  Article  Google Scholar 

  21. Molevich, N.: 2002, Nonstationary self-focusing of sound beams in a vibrationally excited molecular gas. Acoust. Phys. 48, 209.

    ADS  Article  Google Scholar 

  22. Molevich, N.E., Oraevskii, A.N.: 1988, Second viscosity in thermodynamically nonequilibrium media. Pis’ma Zh. Eksp. Teor. Fiz. 94, 128. [1988, J. Exp. Theor. Phys. 67, 504].

    Google Scholar 

  23. Mozafari Ghoraba, A., Vasheghani Farahani, S.: 2018, Properties of nonlinear torsional waves effective on solar swirling plasma motions. Astrophys. J. 869, 93. DOI. ADS.

    ADS  Article  Google Scholar 

  24. Nakariakov, V.M., Roberts, B., Murawski, K.: 1997, Alfven wave phase mixing as a source of fast magnetosonic waves. Solar Phys. 175, 93. DOI. ADS.

    ADS  Article  Google Scholar 

  25. Nakariakov, V.M., Afanasyev, A.N., Kumar, S., Moon, Y.-J.: 2017, Effect of local thermal equilibrium misbalance on long-wavelength slow magnetoacoustic waves. Astrophys. J. 849, 62. DOI. ADS.

    ADS  Article  Google Scholar 

  26. Parker, E.N.: 1953, Instability of thermal fields. Astrophys. J. 117, 431. DOI. ADS.

    ADS  Article  Google Scholar 

  27. Prasad, A., Srivastava, A.K., Wang, T.J.: 2021, Role of compressive viscosity and thermal conductivity on the damping of slow waves in coronal loops with and without heating-cooling imbalance. Solar Phys. 296, 20. DOI. ADS.

    ADS  Article  Google Scholar 

  28. Priest, E.: 2014, Magnetohydrodynamics of the Sun, Cambridge University Press, Cambridge. DOI. ADS.

    Book  Google Scholar 

  29. Prokopyszyn, A.P.K., Hood, A.W., De Moortel, I.: 2019, Phase mixing of nonlinear Alfvén waves. Astron. Astrophys. 624, A90. DOI. ADS.

    Article  Google Scholar 

  30. Ruderman, M.S., Petrukhin, N.S.: 2018, Phase mixing of Alfvén waves in two-dimensional magnetic plasma configurations with exponentially decreasing density. Astron. Astrophys. 620, A44. DOI. ADS.

    ADS  Article  Google Scholar 

  31. Sabri, S., Vasheghani Farahani, S., Ebadi, H., Hosseinpour, M., Fazel, Z.: 2018, Alfvén wave dynamics at the neighbourhood of a 2.5D magnetic null-point. Mon. Not. Roy. Astron. Soc. 479, 4991. DOI. ADS.

    ADS  Article  Google Scholar 

  32. Sabri, S., Farahani, S.V., Ebadi, H., Poedts, S.: 2020, How Alfvén waves induce compressive flows in the neighborhood of a 2.5D magnetic null-point. Sci. Rep. 10, 15603. DOI. ADS.

    ADS  Article  Google Scholar 

  33. Shestov, S.V., Nakariakov, V.M., Ulyanov, A.S., Reva, A.A., Kuzin, S.V.: 2017, Nonlinear evolution of short-wavelength torsional Alfvén waves. Astrophys. J. 840, 64. DOI. ADS.

    ADS  Article  Google Scholar 

  34. Srivastava, A.K., Shetye, J., Murawski, K., Doyle, J.G., Stangalini, M., Scullion, E., Ray, T., Wójcik, D.P., Dwivedi, B.N.: 2017, High-frequency torsional Alfvén waves as an energy source for coronal heating. Sci. Rep. 7, 43147. DOI. ADS.

    ADS  Article  Google Scholar 

  35. Srivastava, A.K., Murawski, K., Kuźma, B., Wójcik, D.P., Zaqarashvili, T.V., Stangalini, M., Musielak, Z.E., Doyle, J.G., Kayshap, P., Dwivedi, B.N.: 2018, Confined pseudo-shocks as an energy source for the active solar corona. Nat. Astron. 2, 951. DOI. ADS.

    ADS  Article  Google Scholar 

  36. Thurgood, J.O., McLaughlin, J.A.: 2013, Nonlinear Alfvén wave dynamics at a 2D magnetic null point: ponderomotive force. Astron. Astrophys. 555, A86. DOI. ADS.

    ADS  Article  Google Scholar 

  37. Toth, G., Odstrcil, D.: 1996, Comparison of some flux corrected transport and variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems. J. Comput. Phys. 128, 82. DOI.

    ADS  Article  MATH  Google Scholar 

  38. Vasheghani Farahani, S., Nakariakov, V.M., Van Doorsselaere, T., Verwichte, E.: 2011, Nonlinear long-wavelength torsional Alfvén waves. Astron. Astrophys. 526, A80. DOI.

    Article  MATH  Google Scholar 

  39. Vasheghani Farahani, S., Hejazi, S.M.: 2017, Coronal jet collimation by nonlinear induced flows. Astrophys. J. 844, 148. DOI. ADS.

    ADS  Article  Google Scholar 

  40. Verwichte, E., Nakariakov, V.M., Longbottom, A.W.: 1999, On the evolution of a nonlinear Alfvén pulse. J. Plasma Phys. 62, 219. DOI. ADS.

    ADS  Article  Google Scholar 

  41. Zavershinskii, D.I., Kolotkov, D.Y., Nakariakov, V.M., Molevich, N.E., Ryashchikov, D.S.: 2019, Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance. Phys. Plasmas 26, 082113. DOI.

    ADS  Article  Google Scholar 

  42. Zavershinskii, D.I., Molevich, N.E., Riashchikov, D.S., Belov, S.A.: 2020, Nonlinear magnetoacoustic waves in plasma with isentropic thermal instability. Phys. Rev. E 101, 043204. DOI.

    ADS  Article  Google Scholar 

  43. Zavershinskiy, D.I., Molevich, N.E.: 2015, Parametrical amplification of Alfvén waves in heat-releasing ionized media with magnetoacoustic instability. Astrophys. Space Sci. 358, 22. DOI. ADS.

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The study was supported in part by the Ministry of Education and Science of Russia by State assignment to educational and research institutions under Project No. FSSS-2020-0014 and No. 0023-2019-0003, and by RFBR, project number 20-32-90018. CHIANTI is a collaborative project involving George Mason University, the University of Michigan (USA), University of Cambridge (UK) and NASA Goddard Space Flight Center (USA).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Belov.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Magnetohydrodynamic (MHD) Waves and Oscillations in the Sun’s Corona and MHD Coronal Seismology

Guest Editors: Dmitrii Kolotkov and Bo Li

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belov, S., Vasheghani Farahani, S., Molevich, N. et al. Longitudinal Plasma Motions Generated by Shear Alfvén Waves in Plasma with Thermal Misbalance. Sol Phys 296, 98 (2021). https://doi.org/10.1007/s11207-021-01850-0

Download citation

Keywords

  • Waves, Alfven
  • Magnetohydrodynamics
  • Coronal seismology