Mixed Properties of Slow Magnetoacoustic and Entropy Waves in a Plasma with Heating/Cooling Misbalance

Abstract

The processes of coronal plasma heating and cooling were previously shown to significantly affect the dynamics of slow magnetoacoustic (MA) waves, causing amplification or attenuation, and also dispersion. However, the entropy mode is also excited in such a thermodynamically active plasma and is affected by the heating/cooling misbalance too. This mode is usually associated with the phenomenon of coronal rain and formation of prominences. Unlike adiabatic plasmas, the properties and evolution of slow MA and entropy waves in continuously heated and cooling plasmas get mixed. Different regimes of the misbalance lead to a variety of scenarios for the initial perturbation to evolve. In order to describe properties and evolution of slow MA and entropy waves in various regimes of the misbalance, we obtained an exact analytical solution of the linear evolutionary equation. Using the characteristic timescales and the obtained exact solution, we identified regimes with qualitatively different behaviour of slow MA and entropy modes. For some of those regimes, the spatio-temporal evolution of the initial Gaussian pulse is shown. In particular, it is shown that slow MA modes may have a range of non-propagating harmonics. In this regime, perturbations caused by slow MA and entropy modes in a low-\(\beta \) plasma would look identical in observations, as non-propagating disturbances of the plasma density (and temperature) either growing or decaying with time. We also showed that the partition of the initial energy between slow MA and entropy modes depends on the properties of the heating and cooling processes involved. The exact analytical solution obtained could be further applied to the interpretation of observations and results of numerical modelling of slow MA waves in the corona and the formation and evolution of coronal rain.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Afanasyev, A.N., Nakariakov, V.M.: 2015, Nonlinear slow magnetoacoustic waves in coronal plasma structures. Astron. Astrophys. 573, A32. DOI. ADS.

    ADS  Article  Google Scholar 

  2. Andries, J., Arregui, I., Goossens, M.: 2005, Determination of the coronal density stratification from the observation of harmonic coronal loop oscillations. Astrophys. J. Lett. 624, L57. DOI. ADS.

    ADS  Article  Google Scholar 

  3. Antolin, P.: 2020, Thermal instability and non-equilibrium in solar coronal loops: from coronal rain to long-period intensity pulsations. Plasma Phys. Control. Fusion 62, 014016. DOI. ADS.

    ADS  Article  Google Scholar 

  4. Antolin, P., Shibata, K., Vissers, G.: 2010, Coronal rain as a marker for coronal heating mechanisms. Astrophys. J. 716, 154. DOI. ADS.

    ADS  Article  Google Scholar 

  5. Banerjee, D., Gupta, G.R., Teriaca, L.: 2011, Propagating MHD waves in coronal holes. Space Sci. Rev. 158, 267. DOI. ADS.

    ADS  Article  Google Scholar 

  6. Banerjee, D., Krishna Prasad, S.: 2016, MHD waves in coronal holes. In: Keiling, A., Lee, D.-H., Nakariakov, V. (eds.) Low-Frequency Waves in Space Plasmas, Geophys. Mono. Ser. 216, 419. DOI. ADS.

    Chapter  Google Scholar 

  7. Botha, G.J.J., Arber, T.D., Nakariakov, V.M., Zhugzhda, Y.D.: 2011, Chromospheric resonances above sunspot umbrae. Astrophys. J. 728, 84. DOI. ADS.

    ADS  Article  Google Scholar 

  8. Chin, R., Verwichte, E., Rowlands, G., Nakariakov, V.M.: 2010, Self-organization of magnetoacoustic waves in a thermally unstable environment. Phys. Plasmas 17, 032107. DOI. ADS.

    ADS  Article  Google Scholar 

  9. Claes, N., Keppens, R.: 2019, Thermal stability of magnetohydrodynamic modes in homogeneous plasmas. Astron. Astrophys. 624, A96. DOI. ADS.

    ADS  Article  Google Scholar 

  10. De Moortel, I.: 2009, Longitudinal waves in coronal loops. Space Sci. Rev. 149, 65. DOI. ADS.

    ADS  Article  Google Scholar 

  11. De Moortel, I., Hood, A.W.: 2003, The damping of slow MHD waves in solar coronal magnetic fields. Astron. Astrophys. 408, 755. DOI. ADS.

    ADS  Article  Google Scholar 

  12. De Moortel, I., Hood, A.W.: 2004, The damping of slow MHD waves in solar coronal magnetic fields. II. The effect of gravitational stratification and field line divergence. Astron. Astrophys. 415, 705. DOI. ADS.

    ADS  Article  Google Scholar 

  13. Duckenfield, T.J., Kolotkov, D.Y., Nakariakov, V.M.: 2021, The effect of the magnetic field on the damping of slow waves in the solar corona. Astron. Astrophys. 646, A155. DOI. ADS.

    ADS  Article  Google Scholar 

  14. Fang, X., Xia, C., Keppens, R.: 2013, Multidimensional modeling of coronal rain dynamics. Astrophys. J. Lett. 771, L29. DOI. ADS.

    ADS  Article  Google Scholar 

  15. Field, G.B.: 1965, Thermal instability. Astrophys. J. 142, 531. DOI. ADS.

    ADS  Article  Google Scholar 

  16. Goossens, M.L., Arregui, I., Van Doorsselaere, T.: 2019, Mixed properties of MHD waves in non-uniform plasmas. Front. Astron. Space Sci. 6, 20. DOI. ADS.

    ADS  Article  Google Scholar 

  17. Heyvaerts, J.: 1974, The thermal instability in a magnetohydrodynamic medium. Astron. Astrophys. 37, 65. ADS.

    ADS  Google Scholar 

  18. Kaneko, T., Yokoyama, T.: 2017, Reconnection-condensation model for solar prominence formation. Astrophys. J. 845, 12. DOI. ADS.

    ADS  Article  Google Scholar 

  19. Kohutova, P., Verwichte, E.: 2017, Dynamics of plasma condensations in a gravitationally stratified coronal loop. Astron. Astrophys. 602, A23. DOI. ADS.

    ADS  Article  Google Scholar 

  20. Kohutova, P., Antolin, P., Popovas, A., Szydlarski, M., Hansteen, V.H.: 2020, Self-consistent 3D radiative magnetohydrodynamic simulations of coronal rain formation and evolution. Astron. Astrophys. 639, A20. DOI. ADS.

    ADS  Article  Google Scholar 

  21. Kolotkov, D.Y., Duckenfield, T.J., Nakariakov, V.M.: 2020, Seismological constraints on the solar coronal heating function. Astron. Astrophys. 644, A33. DOI. ADS.

    ADS  Article  Google Scholar 

  22. Kolotkov, D.Y., Nakariakov, V.M., Zavershinskii, D.I.: 2019, Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona. Astron. Astrophys. 628, A133. DOI. ADS.

    ADS  Article  Google Scholar 

  23. Krishna Prasad, S., Banerjee, D., Van Doorsselaere, T.: 2014, Frequency-dependent damping in propagating slow magneto-acoustic waves. Astrophys. J. 789, 118. DOI. ADS.

    ADS  Article  Google Scholar 

  24. Krishna Prasad, S., Jess, D.B., Van Doorsselaere, T.: 2019, The temperature-dependent damping of propagating slow magnetoacoustic waves. Front. Astron. Space Sci. 6, 57. DOI. ADS.

    ADS  Article  Google Scholar 

  25. Krishna Prasad, S., Raes, J.O., Van Doorsselaere, T., Magyar, N., Jess, D.B.: 2018, The polytropic index of solar coronal plasma in sunspot fan loops and its temperature dependence. Astrophys. J. 868, 149. DOI. ADS.

    ADS  Article  Google Scholar 

  26. Kupriyanova, E., Kolotkov, D., Nakariakov, V., Kaufman, A.: 2020, Quasi-periodic pulsations in solar and stellar flares. Review. J. Solar-Terr. Phys. 6, 3. DOI. ADS.

    ADS  Article  Google Scholar 

  27. Luna-Cardozo, M., Verth, G., Erdélyi, R.: 2012, Longitudinal oscillations in density stratified and expanding solar waveguides. Astrophys. J. 748, 110. DOI. ADS.

    ADS  Article  Google Scholar 

  28. Mandal, S., Magyar, N., Yuan, D., Van Doorsselaere, T., Banerjee, D.: 2016, Forward modeling of propagating slow waves in coronal loops and their frequency-dependent damping. Astrophys. J. 820, 13. DOI. ADS.

    ADS  Article  Google Scholar 

  29. McEwan, M.P., Donnelly, G.R., Díaz, A.J., Roberts, B.: 2006, On the period ratio P1/2P2 in the oscillations of coronal loops. Astron. Astrophys. 460, 893. DOI. ADS.

    ADS  Article  MATH  Google Scholar 

  30. McLaughlin, J.A., Nakariakov, V.M., Dominique, M., Jelínek, P., Takasao, S.: 2018, Modelling quasi-periodic pulsations in solar and stellar flares. Space Sci. Rev. 214, 45. DOI. ADS.

    ADS  Article  Google Scholar 

  31. Molevich, N.E., Oraevskii, A.N.: 1988, Second viscosity in thermodynamically nonequilibrium media. Zh. Eksp. Teor. Fiz. 94, 128. [J. Exp. Theor. Phys. 67, 504 (1988)].

    ADS  Google Scholar 

  32. Molevich, N.E., Ryashchikov, D.S.: 2020, Autowave pulse in a medium with the heating/cooling misbalance and an arbitrary thermal dispersion. Tech. Phys. Lett. 46, 637. DOI. ADS.

    ADS  Article  Google Scholar 

  33. Molevich, N.E., Zavershinskiy, D.I., Ryashchikov, D.S.: 2016, Investigation of the mhd wave dynamics in thermally unstable plasma. Magnetohydrodynamics 52, 191. DOI.

    Article  Google Scholar 

  34. Molevich, N.E., Zavershinsky, D.I., Galimov, R.N., Makaryan, V.G.: 2011, Traveling self-sustained structures in interstellar clouds with the isentropic instability. Astrophys. Space Sci. 334, 35. DOI. ADS.

    ADS  Article  MATH  Google Scholar 

  35. Murawski, K., Zaqarashvili, T.V., Nakariakov, V.M.: 2011, Entropy mode at a magnetic null point as a possible tool for indirect observation of nanoflares in the solar corona. Astron. Astrophys. 533, A18. DOI. ADS.

    ADS  Article  Google Scholar 

  36. Nakariakov, V.M., Kolotkov, D.Y.: 2020, Magnetohydrodynamic waves in the solar corona. Annu. Rev. Astron. Astrophys. 58, 441. DOI. ADS.

    ADS  Article  Google Scholar 

  37. Nakariakov, V.M., Mendoza-Briceño, C.A., Ibáñez S., M.H.: 2000, Magnetoacoustic waves of small amplitude in optically thin quasi-isentropic plasmas. Astrophys. J. 528, 767. DOI. ADS.

    ADS  Article  Google Scholar 

  38. Nakariakov, V.M., Afanasyev, A.N., Kumar, S., Moon, Y.-J.: 2017, Effect of local thermal equilibrium misbalance on long-wavelength slow magnetoacoustic waves. Astrophys. J. 849, 62. DOI. ADS.

    ADS  Article  Google Scholar 

  39. Nakariakov, V.M., Kosak, M.K., Kolotkov, D.Y., Anfinogentov, S.A., Kumar, P., Moon, Y.-J.: 2019, Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations. Astrophys. J. Lett. 874, L1. DOI. ADS.

    ADS  Article  Google Scholar 

  40. Nisticò, G., Polito, V., Nakariakov, V.M., Del Zanna, G.: 2017, Multi-instrument observations of a failed flare eruption associated with MHD waves in a loop bundle. Astron. Astrophys. 600, A37. DOI. ADS.

    Article  Google Scholar 

  41. Ofman, L., Wang, T.: 2002, Hot coronal loop oscillations observed by SUMER: slow magnetosonic wave damping by thermal conduction. Astrophys. J. Lett. 580, L85. DOI. ADS.

    ADS  Article  Google Scholar 

  42. Ofman, L., Wang, T.J., Davila, J.M.: 2012, Slow magnetosonic waves and fast flows in active region loops. Astrophys. J. 754, 111. DOI. ADS.

    ADS  Article  Google Scholar 

  43. Owen, N.R., De Moortel, I., Hood, A.W.: 2009, Forward modelling to determine the observational signatures of propagating slow waves for TRACE, SoHO/CDS, and Hinode/EIS. Astron. Astrophys. 494, 339. DOI. ADS.

    ADS  Article  Google Scholar 

  44. Polyanin, A.D., Zaitsev, V.F.: 2002, Handbook of Exact Solutions for Ordinary Differential Equations, Chapman and Hall/CRC press. ADS.

    MATH  Google Scholar 

  45. Prasad, A., Srivastava, A.K., Wang, T.J.: 2021, Role of compressive viscosity and thermal conductivity on the damping of slow waves in coronal loops with and without heating-cooling imbalance. Solar Phys. 296, 20. DOI. ADS.

    ADS  Article  Google Scholar 

  46. Provornikova, E., Ofman, L., Wang, T.: 2018, Excitation of flare-induced waves in coronal loops and the effects of radiative cooling. Adv. Space Res. 61, 645. DOI. ADS.

    ADS  Article  Google Scholar 

  47. Reale, F.: 2016, Plasma sloshing in pulse-heated solar and stellar coronal loops. Astrophys. J. Lett. 826, L20. DOI. ADS.

    ADS  Article  Google Scholar 

  48. Reale, F., Lopez-Santiago, J., Flaccomio, E., Petralia, A., Sciortino, S.: 2018, X-ray flare oscillations track plasma sloshing along star-disk magnetic tubes in the Orion star-forming region. Astrophys. J. 856, 51. DOI. ADS.

    ADS  Article  Google Scholar 

  49. Reale, F., Testa, P., Petralia, A., Kolotkov, D.Y.: 2019, Large-amplitude quasiperiodic pulsations as evidence of impulsive heating in hot transient loop systems detected in the EUV with SDO/AIA. Astrophys. J. 884, 131. DOI. ADS.

    ADS  Article  Google Scholar 

  50. Riedl, J.M., Van Doorsselaere, T., Santamaria, I.C.: 2019, Wave modes excited by photospheric p-modes and mode conversion in a multi-loop system. Astron. Astrophys. 625, A144. DOI. ADS.

    Article  Google Scholar 

  51. Ruderman, M.S.: 2006, Nonlinear waves in the solar atmosphere. Phil. Trans. Roy. Soc. London Ser. A 364, 485. DOI. ADS.

    ADS  MathSciNet  Article  Google Scholar 

  52. Ryashchikov, D.S., Molevich, N.E., Zavershinskii, D.I.: 2017, Characteristic times of acoustic and condensation instability in heat-releasing gas media. Proc. Eng. 176, 416. DOI.

    Article  Google Scholar 

  53. Selwa, M., Murawski, K., Solanki, S.K.: 2005, Excitation and damping of slow magnetosonic standing waves in a solar coronal loop. Astron. Astrophys. 436, 701. DOI. ADS.

    ADS  Article  Google Scholar 

  54. Somov, B.V., Dzhalilov, N.S., Staude, J.: 2007, Peculiarities of entropy and magnetosonic waves in optically thin cosmic plasma. Astron. Lett. 33, 309. DOI. ADS.

    ADS  Article  Google Scholar 

  55. Van Doorsselaere, T., Kupriyanova, E.G., Yuan, D.: 2016, Quasi-periodic pulsations in solar and stellar flares: an overview of recent results (invited review). Solar Phys. 291, 3143. DOI. ADS.

    ADS  Article  Google Scholar 

  56. Van Doorsselaere, T., Wardle, N., Del Zanna, G., Jansari, K., Verwichte, E., Nakariakov, V.M.: 2011, The first measurement of the adiabatic index in the solar corona using time-dependent spectroscopy of Hinode/EIS observations. Astrophys. J. Lett. 727, L32. DOI. ADS.

    ADS  Article  Google Scholar 

  57. Verwichte, E., Haynes, M., Arber, T.D., Brady, C.S.: 2008, Damping of slow MHD coronal loop oscillations by shocks. Astrophys. J. 685, 1286. DOI. ADS.

    ADS  Article  Google Scholar 

  58. Wang, T.: 2011, Standing slow-mode waves in hot coronal loops: observations, modeling, and coronal seismology. Space Sci. Rev. 158, 397. DOI. ADS.

    ADS  Article  Google Scholar 

  59. Wang, T.J.: 2016, Waves in solar coronal loops. In: Keiling, A., Lee, D.-H., Nakariakov, V. (eds.) Low-Frequency Waves in Space Plasmas, Geophys. Mono. Ser. 216, Am. Geophys. Union, Washington, 395. DOI. ADS.

    Chapter  Google Scholar 

  60. Wang, T., Ofman, L.: 2019, Determination of transport coefficients by coronal seismology of flare-induced slow-mode waves: numerical parametric study of a 1D loop model. Astrophys. J. 886, 2. DOI. ADS.

    ADS  Article  Google Scholar 

  61. Wang, T., Ofman, L., Davila, J.M.: 2013, Three-dimensional magnetohydrodynamic modeling of propagating disturbances in fan-like coronal loops. Astrophys. J. Lett. 775, L23. DOI. ADS.

    ADS  Article  Google Scholar 

  62. Wang, T., Ofman, L., Sun, X., Provornikova, E., Davila, J.M.: 2015, Evidence of thermal conduction suppression in a solar flaring loop by coronal seismology of slow-mode waves. Astrophys. J. Lett. 811, L13. DOI. ADS.

    ADS  Article  Google Scholar 

  63. Wang, T., Ofman, L., Sun, X., Solanki, S.K., Davila, J.M.: 2018, Effect of transport coefficients on excitation of flare-induced standing slow-mode waves in coronal loops. Astrophys. J. 860, 107. DOI. ADS.

    ADS  Article  Google Scholar 

  64. Wang, T., Ofman, L., Yuan, D., Reale, F., Kolotkov, D.Y., Srivastava, A.K.: 2021, Slow-mode magnetoacoustic waves in coronal loops. Space Sci. Rev. 217, 34. DOI. ADS.

    ADS  Article  Google Scholar 

  65. Yuan, D., Nakariakov, V.M.: 2012, Measuring the apparent phase speed of propagating EUV disturbances. Astron. Astrophys. 543, A9. DOI. ADS.

    ADS  Article  Google Scholar 

  66. Zavershinskii, D.I., Kolotkov, D.Y., Nakariakov, V.M., Molevich, N.E., Ryashchikov, D.S.: 2019, Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance. Phys. Plasmas 26, 082113. DOI. ADS.

    ADS  Article  Google Scholar 

  67. Zavershinskii, D.I., Molevich, N.E., Riashchikov, D.S., Belov, S.A.: 2020, Nonlinear magnetoacoustic waves in plasma with isentropic thermal instability. Phys. Rev. E 101, 043204. DOI. ADS.

    ADS  Article  Google Scholar 

  68. Zavershinsky, D.I., Molevich, N.E.: 2013, A magnetoacoustic autowave pulse in a heat-releasing ionized gaseous medium. Tech. Phys. Lett. 39, 676. DOI. ADS.

    ADS  Article  Google Scholar 

Download references

Acknowledgments

The work was supported in part by the Ministry of Science and Higher Education of the Russian Federation by State assignment to educational and research institutions under Projects No. FSSS-2020-0014, 0023-2019-0003, and by Subsidy No.075-GZ/C3569/278. D.Y. Kolotkov acknowledges support from the STFC consolidated grant ST/T000252/1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Zavershinskii.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Magnetohydrodynamic (MHD) Waves and Oscillations in the Sun’s Corona and MHD Coronal Seismology

Guest Editors: Dmitrii Kolotkov and Bo Li

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zavershinskii, D., Kolotkov, D., Riashchikov, D. et al. Mixed Properties of Slow Magnetoacoustic and Entropy Waves in a Plasma with Heating/Cooling Misbalance. Sol Phys 296, 96 (2021). https://doi.org/10.1007/s11207-021-01841-1

Download citation

Keywords

  • Waves, modes
  • Coronal seismology
  • Oscillations, solar