North–South Asymmetry of Solar Meridional Circulation and Synchronization: Two Rings of Four Coupled Oscillators

Abstract

We apply the Kuramoto model with four coupled oscillators to the description of the phase evolution of solar magnetic field proxies at different latitudes. We show that a ring of four coupled oscillators does represent the frequency synchronization of the meridional circulation and the phase evolution of solar proxies. The model allows one to reconstruct the long-term evolution of the meridional flow speed and hemispheric asymmetry at different latitudes. We study the N-S asymmetry of the meridional flow and find a centennial variation of natural frequencies and couplings. Extremes of the north–south asymmetry of the near-equatorial meridional flow correspond to the anomalies of solar activity in Solar Cycles (SC)19–20 and SC23–24. We also find a degeneration of the meridional circulation ring profile in SC23–24, which agrees with helioseismic observations. We show that the N-S asymmetry depends on latitude and is strongly connected with the near-equatorial meridional flow.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Acebrón, J.A., Bonilla, L.L., Pérez Vicente, C.J., Ritort, F., Spigler, R.: 2005, The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137. DOI.

    ADS  Article  Google Scholar 

  2. Belucz, B., Dikpati, M.: 2013, Role of asymmetric meridional circulation in producing North–South asymmetry in a solar cycle dynamo model. Astrophys. J. 779, 4. DOI. ADS.

    ADS  Article  Google Scholar 

  3. Belucz, B., Dikpati, M., Forgács-Dajka, E.: 2015, A Babcock-Leighton solar dynamo model with multi-cellular meridional circulation in advection- and diffusion-dominated regimes. Astrophys. J. 806, 169. DOI. ADS.

    ADS  Article  Google Scholar 

  4. Bisoi, S.K., Janardhan, P.: 2020, A new tool for predicting the solar cycle: correlation between flux transport at the equator and the poles. Solar Phys. 295, 79. DOI.

    ADS  Article  Google Scholar 

  5. Blanter, E., Shnirman, M.: 2020, Inverse problem in the Kuramoto model with a phase lag: application to the Sun. Int. J. Bifurc. Chaos 30, 2050165. DOI.

    MathSciNet  Article  MATH  Google Scholar 

  6. Blanter, E.M., Le Mouël, J.-L., Shnirman, M.G., Courtillot, V.: 2014, Kuramoto model of nonlinear coupled oscillators as a way for understanding phase synchronization: application to solar and geomagnetic indices. Solar Phys. 289, 4309. DOI.

    ADS  Article  Google Scholar 

  7. Blanter, E., Le Mouël, J.-L., Shnirman, M., Courtillot, V.: 2016, Kuramoto model with non-symmetric coupling reconstructs variations of the solar-cycle period. Solar Phys. 291, 1003. DOI.

    ADS  Article  Google Scholar 

  8. Blanter, E., Le Mouël, J.-L., Shnirman, M., Courtillot, V.: 2017, Reconstruction of the North–South solar asymmetry with a Kuramoto model. Solar Phys. 292, 54. DOI. ADS.

    ADS  Article  Google Scholar 

  9. Blanter, E., Le Mouël, J.-L., Shnirman, M., Courtillot, V.: 2018, Long term evolution of solar meridional circulation and phase synchronization viewed through a symmetrical Kuramoto model. Solar Phys. 293, 134. DOI. ADS.

    ADS  Article  Google Scholar 

  10. Böning, V.G.A., Roth, M., Jackiewicz, J., Kholikov, S.: 2017, Inversions for deep solar meridional flow using spherical born kernels. Astrophys. J. 845, 2. DOI.

    ADS  Article  Google Scholar 

  11. Charbonneau, P.: 2020, Dynamo models of the solar cycle. Living Rev. Solar Phys. 17, 4. DOI. ADS.

    ADS  Article  Google Scholar 

  12. Chen, R., Zhao, J.: 2017, A comprehensive method to measure solar meridional circulation and the center-to-limb effect using time-distance helioseismology. Astrophys. J. 849, 144. DOI.

    ADS  Article  Google Scholar 

  13. Choudhuri, A.R.: 2020, The meridional circulation of the Sun: observations, theory and connections with the solar dynamo. arXiv e-prints, arXiv. ADS.

  14. Choudhuri, A.R., Schussler, M., Dikpati, M.: 1995, The solar dynamo with meridional circulation. Astron. Astrophys. 303, L29. ADS.

    ADS  Google Scholar 

  15. Cole, T.W.: 1973, Periodicities in solar activity. Solar Phys. 30, 103. DOI. ADS.

    ADS  Article  Google Scholar 

  16. de Jager, C., Akasofu, S.-I., Duhau, S., Livingston, W.C., Nieuwenhuijzen, H., Potgieter, M.S.: 2016, A remarkable recent transition in the solar dynamo. Space Sci. Rev. 201, 109. DOI. ADS.

    ADS  Article  Google Scholar 

  17. Deng, L.H., Qu, Z.Q., Liu, T., Huang, W.J.: 2013, The hemispheric asynchrony of polar faculae during solar cycles 19-22. Adv. Space Res. 51, 87. DOI. ADS.

    ADS  Article  Google Scholar 

  18. DeVille, L., Ermentrout, B.: 2016, Phase-locked patterns of the Kuramoto model on 3-regular graphs. Chaos 26, 094820. DOI. ADS.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. Dikpati, M.: 2011, Polar field puzzle: solutions from flux-transport dynamo and surface-transport models. Astrophys. J. 733, 90. DOI. ADS.

    ADS  Article  Google Scholar 

  20. Dörfler, F., Bullo, F.: 2014, Synchronization in complex networks of phase oscillators: a survey. Automatica 50, 1539. DOI.

    MathSciNet  Article  MATH  Google Scholar 

  21. Featherstone, N.A., Miesch, M.S.: 2015, Meridional circulation in solar and stellar convection zones. Astrophys. J. 804, 67. DOI.

    ADS  Article  Google Scholar 

  22. Feynman, J., Ruzmaikin, A.: 2014, The centennial Gleissberg cycle and its association with extended minima. J. Geophys. Res. Space Phys. 119, 6027. DOI.

    ADS  Article  Google Scholar 

  23. Garcia, A., Mouradian, Z.: 1998, The Gleissberg cycle of minima. Solar Phys. 180, 495. DOI.

    ADS  Article  Google Scholar 

  24. Gizon, L., Cameron, R.H., Pourabdian, M., Liang, Z.-C., Fournier, D., Birch, A.C., Hanson, C.S.: 2020, Meridional flow in the Sun’s convection zone is a single cell in each hemisphere. Science 368, 1469. DOI.

    ADS  Article  Google Scholar 

  25. Hathaway, D.H., Rightmire, L.: 2010, Variations in the Sun’s meridional flow over a solar cycle. Science 327, 1350. DOI. ADS.

    ADS  Article  Google Scholar 

  26. Hathaway, D.H., Upton, L.: 2014, The solar meridional circulation and sunspot cycle variability. J. Geophys. Res. Space Phys. 119, 3316. DOI.

    ADS  Article  Google Scholar 

  27. Hazra, G., Karak, B.B., Choudhuri, A.R.: 2014, Is a deep one-cell meridional circulation essential for the flux transport solar dynamo? Astrophys. J. 782, 93. DOI.

    ADS  Article  Google Scholar 

  28. Hazra, S., Nandy, D.: 2019, The origin of parity changes in the solar cycle. Mon. Not. Roy. Astron. Soc. 489, 4329. DOI. ADS.

    ADS  Article  Google Scholar 

  29. Hong, H., Strogatz, S.H.: 2011, Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators. Phys. Rev. Lett. 106, 054102. DOI. ADS.

    ADS  Article  Google Scholar 

  30. Janardhan, P., Bisoi, S.K., Gosain, S.: 2010, Solar polar fields during cycles 21 - 23: correlation with meridional flows. Solar Phys. 267, 267. DOI. ADS.

    ADS  Article  Google Scholar 

  31. Janardhan, P., Bisoi, S.K., Ananthakrishnan, S., Tokumaru, M., Fujiki, K., Jose, L., Sridharan, R.: 2015, A 20 year decline in solar photospheric magnetic fields: inner-heliospheric signatures and possible implications. J. Geophys. Res. Space Phys. 120, 5306. DOI. ADS.

    ADS  Article  Google Scholar 

  32. Jiang, J., Cameron, R.H., Schüssler, M.: 2015, The cause of the weak solar cycle 24. Astrophys. J. Lett. 808, L28. DOI. ADS.

    ADS  Article  Google Scholar 

  33. Jouve, L., Brun, A.S.: 2007, On the role of meridional flows in flux transport dynamo models. Astron. Astrophys. 474, 239. DOI. ADS.

    ADS  Article  Google Scholar 

  34. Karak, B.B.: 2010, Importance of meridional circulation in flux transport dynamo: the possibility of a Maunder-like grand minimum. Astrophys. J. 724, 1021. DOI. ADS.

    ADS  Article  Google Scholar 

  35. Karak, B.B., Cameron, R.: 2016, Babcock-Leighton solar dynamo: the role of downward pumping and the equatorward propagation of activity. Astrophys. J. 832, 94. DOI. ADS.

    ADS  Article  Google Scholar 

  36. Karak, B.B., Käpylä, P.J., Käpylä, M.J., Brandenburg, A., Olspert, N., Pelt, J.: 2015, Magnetically controlled stellar differential rotation near the transition from solar to anti-solar profiles. Astron. Astrophys. 576, A26. DOI. ADS.

    ADS  Article  Google Scholar 

  37. Kitchatinov, L.L.: 2016, Meridional circulation in the sun and stars. Geomagn. Aeron. 56, 945. DOI. ADS.

    ADS  Article  Google Scholar 

  38. Komm, R., Howe, R., Hill, F.: 2018, Subsurface zonal and meridional flow during cycles 23 and 24. Solar Phys. 293, 145. DOI. ADS.

    ADS  Article  Google Scholar 

  39. Kralemann, B., Pikovsky, A., Rosenblum, M.: 2011, Reconstructing phase dynamics of oscillator networks. Chaos 21, 025104. DOI. ADS.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. Kuramoto, Y.: 1975, In: Araki, H. (ed.) Self-Entrainment of a Population of Coupled Non-linear Oscillators 39, 420. DOI. ADS.

    Chapter  MATH  Google Scholar 

  41. Le Mouël, J.-L., Lopes, F., Courtillot, V.: 2017, Identification of Gleissberg cycles and a rising trend in a 315-year-long series of sunspot numbers. Solar Phys. 292, 43. DOI. ADS.

    ADS  Article  Google Scholar 

  42. Lekshmi, B., Nandy, D., Antia, H.M.: 2019, Hemispheric asymmetry in meridional flow and the sunspot cycle. Mon. Not. Roy. Astron. Soc. 489, 714. DOI. ADS.

    ADS  Article  Google Scholar 

  43. Leussu, R., Usoskin, I.G., Senthamizh Pavai, V., Diercke, A., Arlt, R., Denker, C., Mursula, K.: 2017, Wings of the butterfly: sunspot groups for 1826-2015. Astron. Astrophys. 599, A131. DOI. ADS.

    ADS  Article  Google Scholar 

  44. Li, K.-J., Liang, H.-F., Feng, W.: 2010, Phase shifts of the paired wings of butterfly diagrams. Res. Astron. Astrophys. 10, 1177. DOI. ADS.

    ADS  Article  Google Scholar 

  45. Mandal, K., Hanasoge, S.M., Rajaguru, S.P., Antia, H.M.: 2018, Helioseismic inversion to infer the depth profile of solar meridional flow using spherical born kernels. Astrophys. J. 863, 39. DOI.

    ADS  Article  Google Scholar 

  46. Mouradian, Z.: 2002, Gleissberg cycle of solar activity. In: Sawaya-Lacoste, H. (ed.) Solspa 2001, Proceedings of the Second Solar Cycle and Space Weather Euroconference, ESA Special Publication 477, 151. ADS.

    Google Scholar 

  47. Muñoz-Jaramillo, A., Sheeley, N.R., Zhang, J., DeLuca, E.E.: 2012, Calibrating 100 years of polar faculae measurements: implications for the evolution of the heliospheric magnetic field. Astrophys. J. 753, 146. DOI.

    ADS  Article  Google Scholar 

  48. Norton, A.A., Charbonneau, P., Passos, D.: 2014, Hemispheric coupling: comparing dynamo simulations and observations. Space Sci. Rev. 186, 251. DOI. ADS.

    ADS  Article  Google Scholar 

  49. Obridko, V.N., Fainshtein, V.G., Zagainova, Y.S., Rudenko, G.V.: 2020, Magnetic coupling of the solar hemispheres during the solar cycle. Solar Phys. 295, 149. DOI. ADS.

    ADS  Article  Google Scholar 

  50. Ottino-Löffler, B., Strogatz, S.H.: 2016, Comparing the locking threshold for rings and chains of oscillators. Phys. Rev. E 94, 062203. DOI.

    ADS  Article  Google Scholar 

  51. Passos, D.: 2012, Evolution of solar parameters since 1750 based on a truncated dynamo model. Astrophys. J. 744, 172. DOI. ADS.

    ADS  Article  Google Scholar 

  52. Passos, D., Miesch, M., Guerrero, G., Charbonneau, P.: 2017, Meridional circulation dynamics in a cyclic convective dynamo. Astron. Astrophys. 607, A120. DOI. ADS.

    ADS  Article  Google Scholar 

  53. Pesnell, W.D.: 2016, Predictions of solar cycle 24: how are we doing? Space Weather 14, 10. DOI.

    ADS  Article  Google Scholar 

  54. Petrie, G., Ettinger, S.: 2017, Polar field reversals and active region decay. Space Sci. Rev. 210, 77. DOI. ADS.

    ADS  Article  Google Scholar 

  55. Petrovay, K.: 2020, Solar cycle prediction. Living Rev. Solar Phys. 17, 2. DOI.

    ADS  Article  Google Scholar 

  56. Pulkkinen, P.J., Brooke, J., Pelt, J., Tuominen, I.: 1999, Long-term variation of sunspot latitudes. Astron. Astrophys. 341, L43. ADS.

    ADS  Google Scholar 

  57. Rajaguru, S.P., Antia, H.M.: 2015, Meridional circulation in the solar convection zone: time-distance helioseismic inferences from four years of HMI/SDO observations. Astrophys. J. 813, 114. DOI.

    ADS  Article  Google Scholar 

  58. Rodrigues, F.A., Peron, T.K.D., Ji, P., Kurths, J.: 2016, The Kuramoto model in complex networks. Phys. Rep. 610, 1. DOI.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  59. Savostianov, A., Shapoval, A., Shnirman, M.: 2020, Reconstruction of the coupling between solar proxies: when approaches based on Kuramoto and Van der Pol models agree with each other. Commun. Nonlinear Sci. Numer. Simul. 83, 105149. DOI. ADS.

    MathSciNet  Article  MATH  Google Scholar 

  60. Savostyanov, A., Shapoval, A., Shnirman, M.: 2020, The inverse problem for the Kuramoto model of two nonlinear coupled oscillators driven by applications to solar activity. Physica D 401, 132160. DOI. ADS.

    MathSciNet  Article  MATH  Google Scholar 

  61. Stankovski, T., Ticcinelli, V., McClintock, P.V.E., Stefanovska, A.: 2015, Coupling functions in networks of oscillators. New J. Phys. 17, 035002. DOI. ADS.

    ADS  Article  MATH  Google Scholar 

  62. Stankovski, T., Pereira, T., McClintock, P.V.E., Stefanovska, A.: 2019, Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences. Phil. Trans. Roy. Soc. London Ser. A 377, 20190039. DOI. ADS.

    ADS  Article  Google Scholar 

  63. Suzuki, M.: 2014, On the long-term modulation of solar differential rotation. Solar Phys. 289, 4021. DOI. ADS.

    ADS  Article  Google Scholar 

  64. Upton, L., Hathaway, D.H.: 2014, Effects of meridional flow variations on solar cycles 23 and 24. Astrophys. J. 792, 142. DOI.

    ADS  Article  Google Scholar 

  65. Virtanen, I.O.I., Virtanen, I.I., Pevtsov, A.A., Mursula, K.: 2018, Reconstructing solar magnetic fields from historical observations. III. Activity in one hemisphere is sufficient to cause polar field reversals in both hemispheres. Astron. Astrophys. 616, A134. DOI. ADS.

    ADS  Article  Google Scholar 

  66. Waldmeier, M.: 1971, The asymmetry of solar activity in the years 1959 1969. Solar Phys. 20, 332. DOI. ADS.

    ADS  Article  Google Scholar 

  67. Wang, Y.-M.: 2017, Surface flux transport and the evolution of the Sun’s polar fields. Space Sci. Rev. 210, 351. DOI. ADS.

    ADS  Article  Google Scholar 

  68. Zhang, L., Mursula, K., Usoskin, I.: 2013, Consistent long-term variation in the hemispheric asymmetry of solar rotation. Astron. Astrophys. 552, A84. DOI. ADS.

    ADS  Article  Google Scholar 

  69. Zhang, L., Mursula, K., Usoskin, I., Wang, H., Du, Z.: 2011, Long-term variation of solar surface differential rotation. In: Astronomical Society of India Conference Series, Astronomical Society of India Conference Series 2, 175. ADS.

    Google Scholar 

  70. Zhao, J., Bogart, R.S., Kosovichev, A.G., Duvall, J.T.L., Hartlep, T.: 2013, Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the Sun. Astrophys. J. Lett. 774, L29. DOI.

    ADS  Article  Google Scholar 

  71. Zolotova, N.V., Ponyavin, D.I., Marwan, N., Kurths, J.: 2009, Long-term asymmetry in the wings of the butterfly diagram. Astron. Astrophys. 503, 197. DOI. ADS.

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Authors wish to acknowledge the support of the Russian Science Foundation (project No 17-11-01052). We are grateful to the anonymous reviewer for new insights and interesting suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elena Blanter.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Stability of Synchronization

The stability of the stationary solution of Equation 8 is determined by negative eigenvalues of the symmetrical matrix

$$ M= \begin{pmatrix} a+b & -b & 0 & -a \\ -b & b+c+d & -d & -c \\ 0 & -d & d+f & -f \\ -a & -c & -f & a+c+f \end{pmatrix} $$
(16)

where

$$\begin{aligned} a=-\kappa_{HP}\cos(\Phi_{P}-\Phi_{H}),\quad b=-\kappa_{HM}\cos( \Phi_{H}-\Phi_{M}) \\ c=-\kappa_{MP}\cos(\Phi_{P}-\Phi_{M}),\quad d=-\kappa_{ML}\cos( \Phi_{M}-\Phi_{L}), \\ f=-\kappa_{LP}\cos(\Phi_{P}-\Phi_{L}). \end{aligned}$$
(17)

Let us note that cosines in \(a\), \(c\) and \(f\) are negative and cosines in \(b\) and \(d\) are positive (Figure 1, right). The characteristic equation is

$$\begin{aligned} \mathit{det} (M-\lambda E)=0 , \end{aligned}$$
(18)

whose left side is simplified to

$$\begin{aligned} \begin{vmatrix} a+b-\lambda& -b & 0 & -a \\ -b & b+c+d-\lambda& -d & -c \\ 0 & -d & d+f-\lambda& -f \\ -a & -c & -f & a+c+f-\lambda \end{vmatrix} \\ =(a+b-\lambda) \begin{vmatrix} b+c+d-\lambda& -d & -c \\ -d & d+f-\lambda& -f \\ -c & -f & a+c+f-\lambda \end{vmatrix} \\ +b \begin{vmatrix} -b & -d & -c \\ 0 & d+f-\lambda& -f \\ -a & -f & a+c+f-\lambda \end{vmatrix} +a \begin{vmatrix} -b & b+c+d-\lambda& -d \\ 0 & -d & d+f-\lambda \\ -a & -c & -f \end{vmatrix} \\ =\lambda(\lambda^{3}-2\lambda^{2}(a+b+c+d+f)+ \\ +\lambda(3(ab+bc+ac+cd+bd+af+cf)+4ad+4bf))- \\ -4(abd+abf+bcd+acd+acf+bcf+bdf))=0. \end{aligned}$$
(19)

Equation 19 has all non-positive solutions only when all its coefficients are non-negative. Then we have the following inequalities:

$$\begin{aligned} a+b+c+d+f< 0, \\ 3ab+3bc+3ac+4ad+3bd+3cd+3af+3cf+4bf+3df>0, \\ abf+acd+abd+bcd+adf+acf+bcf+bdf< 0. \end{aligned}$$
(20)

The stable stationary solution in the minimal model is determined by three non-zero coefficients \(A\), \(B\), \(C\) with the imposed inequalities:

$$ A+B+C< 0, \quad3AB+4BC+3AC>0, \quad ABC< 0 .$$
(21)

To satisfy these three inequalities, all coefficients should be negative: \(A<0\), \(B<0\), \(C<0\).

Let us now consider the minimal models one by one and resolve them for the constant mean values of coupling and natural frequencies relevant to the synchronization when \(\dot{\Phi}_{i}=0\). The synchronized solution of Equation 8 satisfies the following equations:

$$\begin{aligned} \Omega-\omega_{H}= \kappa_{HP}\sin(\Phi_{P}-\Phi_{H})+ \kappa_{HM} \sin(\Phi_{M}-\Phi_{H}) \\ \Omega-\omega_{M}= \kappa_{HM}\sin(\Phi_{H}-\Phi_{M})+ \\ {}+\kappa_{MP}\sin(\Phi_{P}-\Phi_{M}) +\kappa_{ML}\sin(\Phi_{L}- \Phi_{M}), \\ \Omega-\omega_{L}= \kappa_{ML}\sin(\Phi_{M}-\Phi_{L}) +\kappa_{LP} \sin(\Phi_{P}-\Phi_{L}), \\ \Omega-\omega_{P}= \kappa_{LP}\sin(\Phi_{L}-\Phi_{P})+ \\ {}+\kappa_{MP}\sin(\Phi_{M}-\Phi_{P}) +\kappa_{HP}\sin(\Phi_{H}- \Phi_{P}). \end{aligned}$$
(22)

We use the following properties of the mean values of observed phase differences:

$$\begin{aligned} \langle\sin(\Phi_{H}-\Phi_{P})\rangle< 0, \quad\langle\sin( \Phi_{L}-\Phi_{P})\rangle>0, \\ \langle\sin(\Phi_{H}-\Phi_{M})\rangle>0, \quad\langle\sin( \Phi_{L}-\Phi_{M})\rangle< 0, \end{aligned}$$
(23)

where the average is taken over any long time interval greater than one solar cycle, excluding the interval of the anomalous Solar Cycle 20. We test that the coherence of coupling and natural frequencies, which agrees the stability of the stationary solution (Equation 20) does not contradict the condition of synchronization (Equation 22). The contradiction may appear if the clockwise rotation determines positive left side of one of equations in Equation 22, when the phases difference and coupling determine the negative right side.

H-M-L-P:

The negative values of \(b\), \(d\), \(f\) determine \(\kappa_{HM}>0\), \(\kappa_{ML}>0\) and \(\kappa_{LP}<0\). Then three cells P, H, and L rotate clockwise and the M-cell rotates counter-clockwise. The two terms in the right side of the second equation of Equation 22 have different signs, so we do not find a contradiction with the positive of left side \(\Omega-\omega_{M}\). \(\Omega-\omega_{P}\) is negative in agreement with current observations.

P-H-M-L:

The negative values of \(a\), \(b\), \(d\) determine \(\kappa_{HP}<0\), \(\kappa_{HM}>0\) and \(\kappa_{ML}>0\). Then three cells P, H, and L rotate clockwise and the M-cell rotates counter-clockwise. As above there is no contradiction with the positive \(\Omega-\omega_{M}\), but the positive right side determines \(\Omega-\Omega_{P}>0\) in contradiction with current observations \(\omega_{P}>\Omega\). Thus, in terms of this model the current observations of the near-surface meridional flow are not representative on a long time span.

H-P-M-L:

The negative values of \(a\), \(c\), \(d\) determine \(\kappa_{HP}<0\), \(\kappa_{HM}>0\) and \(\kappa_{ML}>0\). Then three cells P, H, and M rotate clockwise and the L-cell rotates counter-clockwise. There is no contradiction with the positive left side \(\Omega-\omega_{L}\), but \(\Omega-\Omega_{P}>0\) in contradiction with current observations \(\omega_{P}>\Omega\). Thus, the current observations appear to be not representative.

H-M-P-L:

The negative values of \(b\), \(c\), \(f\) determine \(\kappa_{HM}>0\), \(\kappa_{MP}<0\) and \(\kappa_{LP}<0\). Then P, M and L cells rotate counter-clockwise and H-cell rotates clockwise. The positive left side \(\Omega-\omega_{H}\) contradicts the negative right side of the same equation.

H-P-L-M:

The negative values of \(a\), \(d\), \(f\) determine \(\kappa_{HP}>0\), \(\kappa_{ML}>0\) and \(\kappa_{LP}<0\). Then P, H and L cells rotate counter-clockwise and M-cell rotates clockwise. The positive left side \(\Omega-\omega_{M}\) contradict the negative left side of the same equation.

M-H-P-L:

The negative values of \(a\), \(b\), \(f\) determine \(\kappa_{HP}>0\), \(\kappa_{HM}>0\) and \(\kappa_{LP}<0\). Then P, H and L cells rotate counter-clockwise and M-cell rotates clockwise. There is no contradiction between \(\Omega-\omega_{M}>0\) and the positive right side.

P-model:

The negative values of \(a\), \(c\), \(f\) determine \(\kappa_{HP}>0\), \(\kappa_{MP}<0\) and \(\kappa_{LP}<0\). Then all cells rotate counter-clockwise. There is no clockwise rotating cells, therefore there is no contradiction.

M-model:

The negative values of \(b\), \(c\), \(d\) determine \(\kappa_{HM}>0\), \(\kappa_{MP}<0\) and \(\kappa_{ML}>0\). Then P and M cells rotate counter-clockwise, H and L cells rotate clockwise. There is a contradiction between positive \(\Omega-\omega_{H}\) and the negative right side \(\kappa_{HM}\sin(\Phi_{M}-\Phi_{H})\).

Appendix B: The Ring Model

Chains M-H-P-L and H-M-L-P are stable under the assumptions \(\omega_{P}>\Omega\), \(\omega_{L}<\Omega\), \(\omega_{H}>2\Omega\). Chains M-H-P-L and P-H-M-L are stable under the assumptions \(\omega_{P}<\Omega\), \(\omega_{L}<\Omega\), \(\omega_{H}>2\Omega\). Solving the inverse problem we first reconstruct the evolution of coupling for constant natural frequencies and then reconstruct the evolution of natural frequencies for constant coupling. The above restrictions with the condition restrict possible values of constant natural frequencies.

B.1 Coupling Reconstruction

The reconstruction of coupling for the chain H-M-L-P is determined by the equations

$$\begin{aligned} \kappa_{ML}(t)= \frac{2\Omega-\omega_{L}-\omega_{P}}{\sin(\Phi_{M}(t)-\Phi_{L}(t))}, \qquad\kappa_{HM}(t)= \frac{\Omega-\omega_{H}}{\sin(\Phi_{M}(t)-\Phi_{H}(t))}, \\ \kappa_{LP}(t)= \frac{\Omega-\omega_{P}}{\sin(\Phi_{L}(t)-\Phi_{P}(t))}. \end{aligned}$$
(24)

The reconstruction of coupling for the chain M-H-P-L is determined by the equations

$$\begin{aligned} \kappa_{HP}(t)= \frac{2\Omega-\omega_{L}-\omega_{P}}{\sin(\Phi_{H}(t)-\Phi_{P}(t))}, \qquad\kappa_{HM}(t)= \frac{\Omega-\omega_{M}}{\sin(\Phi_{H}(t)-\Phi_{M}(t))}, \\ \kappa_{LP}(t)= \frac{\Omega-\omega_{L}}{\sin(\Phi_{P}(t)-\Phi_{L}(t))}. \end{aligned}$$
(25)

The reconstruction of coupling for the chain P-H-M-L is determined by the equations:

$$\begin{aligned} \kappa_{HP}(t)= \frac{\Omega-\omega_{P}}{\sin(\Phi_{H}(t)-\Phi_{P}(t))},\qquad \kappa_{HM}(t)= \frac{2\Omega-\omega_{M}-\omega_{L}}{\sin(\Phi_{H}(t)-\Phi_{M}(t))} \\ \kappa_{ML}(t)= \frac{\Omega-\omega_{L}}{\sin(\Phi_{M}(t)-\Phi_{L}(t))} \end{aligned}$$
(26)

At time \(t\) when the value of sine is smaller than a threshold value \(h=0.1\) it is replaced by its average estimated over the whole time interval of observations.

An example of the coupling reconstruction for the chain P-H-M-L is presented in Figure 7. The evolution of \(\kappa_{ML}\) follows the evolution of the solar cycle frequency \(\Omega(t)\) with correlation coefficient 0.76 in the northern and 0.86 in the southern hemisphere.

Figure 7
figure7

Evolution of coupling coefficient (from left to right): \(\kappa_{HP}\), \(\kappa_{HM}\), \(\kappa_{ML}\) in the northern (blue) and southern (red) hemisphere reconstructed from the chain models P-H-M-L assuming the mean frequency \(\Omega\) to be constant (top row) or variable (bottom row). Parameters of natural frequencies in the chain model are \(\omega_{H}=1.8\), \(\omega_{L}=0.5\), \(\omega_{P}=0.55\), \(\omega_{M}=-0.51\).

The coupling evolution reconstructed through any of the stable chain model is practically the same (Figure 8)

Figure 8
figure8

Evolution of coupling coefficients (from left to right): \(\kappa_{HP}\), \(\kappa_{HM}\), \(\kappa_{ML}\) in the northern (blue) and southern (red) hemisphere reconstructed from the chain models (from top to bottom) H-M-L-P, M-H-P-L for \(\omega_{P}>\Omega\), M-H-P-L for \(\omega_{P}<\Omega\), P-H-M-L assuming the mean frequency \(\Omega\) to be constant. Parameters of natural frequencies in the chain models H-M-L-P, M-H-P-L (\(\omega_{P}>\Omega\)) are \(\omega_{H}=1.8\), \(\omega_{L}=0.3\), \(\omega_{M}=-0.56\), \(\omega_{P}=0.8\) in the chain models M-H-P-L (\(\omega_{P}<\Omega\)), P-H-M-L: \(\omega_{H}=1.8\); \(\omega_{L}=0.5\), \(\omega_{M}=-0.51\), \(\omega_{P}=0.55\).

B.2 Reconstruction of Natural Frequencies

Now we estimate the evolution of natural frequencies considering coupling values to be equal to their average values over the whole time span (see Table 2). The average couplings are estimated for constant \(\Omega=\Omega_{0}\) and substituted into Equation 22. In order to ensure stability we estimate coupling in the chain model H-M-L-P under the assumption \(\omega_{P}>\Omega\), in the chain model P-H-M-L under the assumption \(\omega_{P}<\Omega\), and in the chain model M-H-P-L in both cases. The reconstruction of natural frequencies is performed for \(\Omega=\Omega(t)\) (Figure 9).

Figure 9
figure9

Evolution of natural frequencies (from left to right) \(\omega_{H}\), \(\omega_{M}\), \(\omega_{L}\) and \(\omega_{P}\) in the northern (blue) and southern (red) hemisphere reconstructed from the chain model (from top to bottom) H-M-L-P, M-H-P-L (\(\omega_{P}>\Omega_{0}\)), M-H-P-L (\(\omega_{P}<\Omega_{0}\)), P-H-M-L. The coupling coefficients are given in Table 2.

B.3 Quality of the Reconstruction

Let us compare the reconstructed phases with the original ones in the stable chain models belonging to the same ring. The quality of the reconstruction is evaluated by the correlation coefficients computed in a centered sliding window T = 11 yr. Figure 10 compares the quality of the reconstruction in the stable chain models. We see that the best reconstruction in the northern hemisphere is provided by the chain M-H-P-L (Figure 10, top middle), and the reconstruction of the polar field by the model P-H-M-L fails in the southern hemisphere (Figure 10, bottom right).

Figure 10
figure10

Correlation between original and simulated phases of the H (blue), M (red), L (yellow) and P (purple) cells for constant couplings and variable natural frequencies reconstructed for the same parameters as Figure 7 in the stable chain models of the same ring (from left to right) H-M-L-P and M-H-P-L for \(\omega_{P}>\Omega\), M-H-P-L and P-H-M-L for \(\omega_{P}<\Omega\) in the northern (top row) and southern (bottom row) hemisphere. The solar cycle frequency is taken \(\Omega=\Omega(t)\).

B.4 WSO Polar Field Index

Starting from 1976 we can perform the above reconstructions with the WSO polar field index. Helioseismic observations of the near-surface meridional flow cover most of the time period from 1976 to 2017 and report its speed to be above 10 m s−1 (Hathaway and Upton, 2014). Assuming the surface circulation cell to extend from equator to pole and up to \(0.1~R_{\odot}\) in depth we get \(\omega_{P}>\Omega\). So for the time period 1976–2017 only two chain models are valid: H-M-L-P and M-H-P-L. Figure 11 compares the coupling reconstruction in this two chains for the two polar field indices \(P(t)\) and \(W(t)\). The difference manifested in the southern hemisphere is related to the phase lag between indices \(P\) and \(W\) (Figure 1, right column). The closeness of \(\sin(\Phi_{W}(t)-\Phi_{H}(t))\) determines jumps of the coupling coefficient \(\kappa_{HP}\) in the southern hemisphere.

Figure 11
figure11

Evolution of coupling coefficients in the chain models H-M-L-P (top) \(\kappa_{HM}\), \(\kappa_{ML}\), \(\kappa_{LP}\) and M-H-P-L (bottom) \(\kappa_{HM}\), \(\kappa_{HP}\), \(\kappa_{LP}\) in the northern (blue) and southern (red) hemisphere reconstructed for WSO (solid) and polar faculae (dashed) polar field indices. Reconstruction is performed for constant natural frequencies \(\omega_{H}=1.8\), \(\omega_{L}=0.3\), \(\omega_{M}=-0.56\), \(\omega_{P}=0.8\).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blanter, E., Shnirman, M. North–South Asymmetry of Solar Meridional Circulation and Synchronization: Two Rings of Four Coupled Oscillators. Sol Phys 296, 86 (2021). https://doi.org/10.1007/s11207-021-01821-5

Download citation

Keywords

  • Meridional circulation
  • Hemispheric asymmetry
  • Synchronization
  • Non-linear dynamics
  • Solar cycle