Skip to main content
Log in

Divergence and Vorticity of Subsurface Flows During Solar Cycles 23 and 24

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We study the solar-cycle variation of the divergence and vorticity of subsurface horizontal flows from the surface to a depth of 16 Mm. The flows were derived with ring-diagram analysis applied to Michelson Doppler Imager (MDI) Dynamics Program, Global Oscillation Network Group (GONG), and Helioseismic and Magnetic Imager (HMI) Dopplergrams. We study their variation for the complete data set and for two subsets representing active and quiet regions. All three data sets show alternating bands of diverging and converging flows and bands of cyclonic and anticyclonic flows moving from mid-latitudes toward the equator during a solar cycle. For Solar Cycle 24, these bands are precursors of the magnetic activity appearing several years before magnetic activity is present at a given latitude even leading the fast bands of the flows. The amplitude differences between the cyclonic and anticyclonic and the converging and diverging bands during a solar cycle agree within the error bars between the complete data set and the two subsets. For Solar Cycle 24, the amplitude differences are \(6.0 \pm 0.7 \;10^{-8}~\text{s}^{-1}\) for the bands of vorticity and \(-4.9 \pm 0.6\;10^{-8}~\text{s}^{-1}\) for those of divergence averaged over 2.0 – 11.6 Mm using the complete data set. The amplitude differences of Solar Cycle 23 are \(26 \pm 3\)% smaller than those of Solar Cycle 24. The flows of the active-region subset are more converging and cyclonic than those of the quiet-region subset with an extra vorticity of \(1.3 \pm 0.1 \;10^{-8}~\text{s}^{-1}\) and an extra divergence of \(-6.7 \pm 0.3\;10^{-8}~\text{s}^{-1}\) averaged over 7.5 – 30 and all depths and epochs. The amplitude of the extra divergence of active regions is about a factor of 1.3 larger at depths shallower than 6 Mm and decreases with increasing depth, while the extra vorticity is nearly constant with depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Baldner, C.S., Schou, J.: 2012, Effects of asymmetric flows in solar convection on oscillation modes. Astrophys. J. Lett. 760, L1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bao, S., Zhang, H.: 1998, Patterns of current helicity for the twenty-second solar cycle. Astrophys. J. Lett. 496(1), L43. DOI. ADS.

    Article  ADS  Google Scholar 

  • Basu, S., Antia, H.M., Bogart, R.S.: 2004, Ring-diagram analysis of the structure of solar active regions. Astrophys. J. 610, 1157. DOI. ADS.

    Article  ADS  Google Scholar 

  • Berger, M.A., Field, G.B.: 1984, The topological properties of magnetic helicity. J. Fluid Mech. 147, 133. DOI. ADS.

    Article  ADS  MathSciNet  Google Scholar 

  • Bogart, R.S., Baldner, C., Basu, S., Haber, D.A., Rabello-Soares, M.C.: 2011a, HMI ring diagram analysis I. The processing pipeline. J. Phys. Conf. Ser. 271(1), 012008. DOI. ADS.

    Article  Google Scholar 

  • Bogart, R.S., Baldner, C., Basu, S., Haber, D.A., Rabello-Soares, M.C.: 2011b, HMI ring diagram analysis II. Data products. J. Phys. Conf. Ser. 271(1), 012009. DOI. ADS.

    Article  Google Scholar 

  • Broomhall, A.-M., Chatterjee, P., Howe, R., Norton, A.A., Thompson, M.J.: 2015, The Sun’s interior structure and dynamics, and the solar cycle. In: The Solar Activity Cycle 53, 191. DOI. ADS.

    Chapter  Google Scholar 

  • Chakraborty, S., Choudhuri, A.R., Chatterjee, P.: 2009, Why does the Sun’s torsional oscillation begin before the sunspot cycle? Phys. Rev. Lett. 102(4), 041102. DOI. ADS.

    Article  ADS  Google Scholar 

  • Corbard, T., Toner, C., Hill, F., Hanna, K.D., Haber, D.A., Hindman, B.W., Bogart, R.S.: 2003, Ring-diagram analysis with GONG++. In: Sawaya-Lacoste, H. (ed.) GONG+ 2002. Local and Global Helioseismology: The Present and Future, ESA SP 517, 255. ADS.

    Google Scholar 

  • Dikpati, M., de Toma, G., Gilman, P.A., Arge, C.N., White, O.R.: 2004, Diagnostics of polar field reversal in solar cycle 23 using a flux transport dynamo model. Astrophys. J. 601(2), 1136. DOI. ADS.

    Article  ADS  Google Scholar 

  • Durney, B.R.: 2000, On the torsional oscillations in Babcock-Leighton solar dynamo models. Solar Phys. 196(1), 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gizon, L., Duvall, J.T.L.: 2003, Supergranulation supports waves. In: Sawaya-Lacoste, H. (ed.) GONG+ 2002. Local and Global Helioseismology: The Present and Future, ESA Special Publication 517, 43. ADS.

    Google Scholar 

  • González Hernández, I., Kholikov, S., Hill, F., Howe, R., Komm, R.: 2008, Subsurface meridional circulation in the active belts. Solar Phys. 252, 235. DOI. ADS.

    Article  ADS  Google Scholar 

  • Haber, D.A., Hindman, B.W., Toomre, J., Bogart, R.S., Larsen, R.M., Hill, F.: 2002, Evolving submerged meridional circulation cells within the upper convection zone revealed by ring-diagram analysis. Astrophys. J. 570, 855. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hagino, M., Sakurai, T.: 2005, Solar-cycle variation of magnetic helicity in active regions. Publ. Astron. Soc. Japan 57, 481. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harvey, J., Tucker, R., Britanik, L.: 1998, High resolution upgrade of the GONG instruments. In: Korzennik, S. (ed.) Structure and Dynamics of the Interior of the Sun and Sun-Like Stars, ESA Special Publication 418, 209. ADS.

    Google Scholar 

  • Harvey, J.W., Hill, F., Hubbard, R.P., Kennedy, J.R., Leibacher, J.W., Pintar, J.A., Gilman, P.A., Noyes, R.W., Title, A.M., Toomre, J., Ulrich, R.K., Bhatnagar, A., Kennewell, J.A., Marquette, W., Patron, J., Saa, O., Yasukawa, E.: 1996, The Global Oscillation Network Group (GONG) project. Science 272, 1284. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hazra, G., Choudhuri, A.R.: 2017, A theoretical model of the variation of the meridional circulation with the solar cycle. Mon. Not. Roy. Astron. Soc. 472(3), 2728. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hill, F.: 1988, Rings and trumpets—Three-dimensional power spectra of solar oscillations. Astrophys. J. 333, 996. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hindman, B.W., Haber, D.A., Toomre, J.: 2009, Subsurface circulations within active regions. Astrophys. J. 698(2), 1749. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R.F.: 1996, Solar active regions as diagnostics of subsurface conditions. Annu. Rev. Astron. Astrophys. 34, 75. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howe, R.: 2009, Solar interior rotation and its variation. Living Rev. Solar Phys. 6, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R., Schou, J., Thompson, M.J.: 2009, A note on the torsional oscillation at solar minimum. Astrophys. J. Lett. 701(2), L87. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howe, R., Hill, F., Komm, R., Christensen-Dalsgaard, J., Larson, T.P., Schou, J., Thompson, M.J., Ulrich, R.: 2011, The torsional oscillation and the new solar cycle. J. Phys. Conf. Ser. 271(1), 012074. DOI. ADS.

    Article  Google Scholar 

  • Howe, R., Hill, F., Komm, R., Chaplin, W.J., Elsworth, Y., Davies, G.R., Schou, J., Thompson, M.J.: 2018, Signatures of solar cycle 25 in subsurface zonal flows. Astrophys. J. Lett. 862(1), L5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., Gosain, S.: 2019, Kinetic helicity and lifetime of activity complexes during solar cycle 24. Astrophys. J. 887(2), 192. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., Howe, R., Hill, F.: 2017, Solar-cycle variation of subsurface-flow divergence: A proxy of magnetic activity? Solar Phys. 292, 122. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., Howe, R., Hill, F.: 2018, Subsurface zonal and meridional flow during cycles 23 and 24. Solar Phys. 293(10), 145. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., Howe, R., Hill, F.: 2020, Solar-cycle variation of the subsurface flows of active- and quiet-region subsets. Solar Phys. 295(3), 47. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., Corbard, T., Durney, B.R., González Hernández, I., Hill, F., Howe, R., Toner, C.: 2004, Solar subsurface fluid dynamics descriptors derived from global oscillation network group and Michelson Doppler imager data. Astrophys. J. 605, 554. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., Howe, R., Hill, F., Miesch, M., Haber, D., Hindman, B.: 2007, Divergence and vorticity of solar subsurface flows derived from ring-diagram analysis of MDI and GONG data. Astrophys. J. 667, 571. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., González Hernández, I., Howe, R., Hill, F.: 2015a, Solar-cycle variation of subsurface meridional flow derived with ring-diagram analysis. Solar Phys. 290, 3113. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., González Hernández, I., Howe, R., Hill, F.: 2015b, Subsurface zonal and meridional flow derived from GONG and SDO/HMI: A comparison of systematics. Solar Phys. 290, 1081. DOI. ADS.

    Article  ADS  Google Scholar 

  • Longcope, D.W., Fisher, G.H., Pevtsov, A.A.: 1998, Flux-tube twist resulting from helical turbulence: The sigma-effect. Astrophys. J. 507, 417. DOI. ADS.

    Article  ADS  Google Scholar 

  • Miesch, M.S.: 2005, Large-scale dynamics of the convection zone and tachocline. Living Rev. Solar Phys. 2(1), 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pipin, V.V., Kosovichev, A.G.: 2018, Does nonaxisymmetric dynamo operate in the Sun? Astrophys. J. 867(2), 145. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pipin, V.V., Kosovichev, A.G.: 2019, On the origin of solar torsional oscillations and extended solar cycle. Astrophys. J. 887(2), 215. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rempel, M.: 2005, Solar differential rotation and meridional flow: The role of a subadiabatic tachocline for the Taylor-Proudman balance. Astrophys. J. 622(2), 1320. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I. (MDI Engineering Team): 1995, The solar oscillations investigation - Michelson Doppler imager. Solar Phys. 162, 129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI. ADS.

    Article  ADS  Google Scholar 

  • Spruit, H.C.: 2003, Origin of the torsional oscillation pattern of solar rotation. Solar Phys. 213, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhao, J., Kosovichev, A.G., Bogart, R.S.: 2014, Solar meridional flow in the shallow interior during the rising phase of cycle 24. Astrophys. J. Lett. 789, L7. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The data used here are courtesy of NASA/SDO and the HMI Science Team. SOHO is a project of international cooperation between ESA and NASA. This work also utilizes GONG data obtained by the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation. Rachel Howe acknowledges support of the UK Science and Technology Facilities Council (STFC) and computing support from the National Solar Observatory. This work was supported by NASA grants 80NSSC18K1206, 80NSSC19K0261, and 80NSSC20K0194 to the National Solar Observatory and by NASA grant NNH18ZDA001N-DRIVE to Stanford University. We thank the referee for useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Komm.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komm, R., Howe, R. & Hill, F. Divergence and Vorticity of Subsurface Flows During Solar Cycles 23 and 24. Sol Phys 296, 73 (2021). https://doi.org/10.1007/s11207-021-01799-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01799-0

Keywords

Navigation