Mid-term Periodicities in Solar Radio Emission Corresponding to Sunspot Number During Solar Cycle 23

Abstract

We present a systematic time-series analysis of solar radio emission in nine different frequencies to compare with that of daily sunspot number (SSN) during Solar Cycle 23 (1996–2009). Owing to the contribution from quiet-sun emission, the total solar fluxes in microwaves do not decrease as significantly as the sunspot number does during 2006 to 2009. Lomb–Scargle (LS) and wavelet analysis techniques are employed to infer the various periodicities present in the time-series data. False alarm probability (FAP) levels are estimated by the use of background mean power spectrum in the global wavelet spectrum. The LS periodogram contains resolved period peaks, some of which are below FAP levels, for example a well-known rotational period. These peaks are assessed with global significance levels of the wavelet analysis. In all the data sets, the period for solar rotational modulation (26–31 days) is present. The periodogram for the SSN presents Riéger type periods (130–180 days), mid-term periods (300–400 days) and long-term periods (430–850 days). These periods in north and south are not similar, especially long term periods are missing in SSN data of the southern hemisphere. Corresponding to the SSN periodicities, Riéger and near Riéger type of oscillations (130–180 days), quasi-biennial periodicities in the range of 1.2 to 3 years were detected in the time-series data of radio frequencies. Several of these detected periods fall in the range of the periods that are suggested to be connected with magneto-Rossby wave spherical harmonics. Our analysis found reduced power levels in the LS periodograms of low frequencies because of the fact that these low frequency emissions originate higher up in the corona with diminishing contrast to small scale structures.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Notes

  1. 1.

    https://www.ngdc.noaa.gov/stp/space-weather/online-publications/stp_sib/.

  2. 2.

    See for more details ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA_RADIO.

References

  1. Aroori, M., Yellaiah, G., Reddy, K.C.: 2018, Variation of quiet Sun radiation during Solar Cycles 23 and 24. In: Foullon, C., Malandraki, O.E. (eds.) Space Weather of the Heliosphere: Processes and Forecasts, IAU Symposium 335, 11. DOI. ADS.

    Google Scholar 

  2. Ataç, T., Özgüç, A., Rybak, J.: 2006, Periodicities in irradiance and in other solar activity indices during Cycle 23. Solar Phys. 237, 433. DOI. ADS.

    ADS  Article  Google Scholar 

  3. Auchère, F., Froment, C., Bocchialini, K., Buchlin, E., Solomon, J.: 2016, On the Fourier and wavelet analysis of coronal time series. Astrophys. J. 825(2), 110. DOI. ADS.

    ADS  Article  Google Scholar 

  4. Bai, T.: 2003, Periodicities in solar flare occurrence: analysis of Cycles 19-23. Astrophys. J. 591, 406. DOI. ADS.

    ADS  Article  Google Scholar 

  5. Bai, T., Sturrock, P.A.: 1991, The 154-day and related periodicities of solar activity as subharmonics of a fundamental period. Nature 350, 141. DOI. ADS.

    ADS  Article  Google Scholar 

  6. Bai, T., Sturrock, P.A.: 1993, Evidence for a fundamental period of the sun and its relation to the 154 day complex of periodicities. Astrophys. J. 409, 476. DOI. ADS.

    ADS  Article  Google Scholar 

  7. Ballester, J.L., Oliver, R., Baudin, F.: 1999, Discovery of the near 158 day periodicity in group sunspot numbers during the eighteenth century. Astrophys. J. Lett. 522(2), L153. DOI. ADS.

    ADS  Article  Google Scholar 

  8. Ballester, J.L., Oliver, R., Carbonell, M.: 2002, The near 160 day periodicity in the photospheric magnetic flux. Astrophys. J. 566(1), 505. DOI. ADS.

    ADS  Article  Google Scholar 

  9. Ballester, J.L., Oliver, R., Carbonell, M.: 2004, Return of the near 160 day periodicity in the photospheric magnetic flux during solar Cycle 23. Astrophys. J. Lett. 615(2), L173. DOI. ADS.

    ADS  Article  Google Scholar 

  10. Ballester, J.L., Oliver, R., Carbonell, M.: 2005, The periodic behaviour of the North-South asymmetry of sunspot areas revisited. Astron. Astrophys. 431, L5. DOI. ADS.

    ADS  Article  Google Scholar 

  11. Bazilevskaya, G., Broomhall, A.-M., Elsworth, Y., Nakariakov, V.M.: 2014, A combined analysis of the observational aspects of the quasi-biennial oscillation in solar magnetic activity. Space Sci. Rev. 186(1-4), 359. DOI. ADS.

    ADS  Article  Google Scholar 

  12. Bogart, R.S., Bai, T.: 1985, A 157-day periodioity of flare occurrence observed in microwave data. In: Bulletin of the American Astronomical Society, Bull. Am. Astron. Soc. 17, 644. ADS.

    Google Scholar 

  13. Bouwer, S.D.: 1992, Periodicities of solar irradiance and solar activity indices - Part two. Solar Phys. 142(2), 365. DOI. ADS.

    ADS  Article  Google Scholar 

  14. Carbonell, M., Oliver, R., Ballester, J.L.: 1993, On the asymmetry of solar activity. Astron. Astrophys. 274, 497. ADS.

    ADS  Google Scholar 

  15. Chowdhury, P., Dwivedi, B.N.: 2011, Periodicities of sunspot number and coronal index time series during solar Cycle 23. Solar Phys. 270, 365. DOI. ADS.

    ADS  Article  Google Scholar 

  16. Chowdhury, P., Khan, M., Ray, P.C.: 2009, Intermediate-term periodicities in sunspot areas during solar Cycles 22 and 23. Mon. Not. Roy. Astron. Soc. 392, 1159. DOI. ADS.

    ADS  Article  Google Scholar 

  17. Chowdhury, P., Khan, M., Ray, P.C.: 2010, Evaluation of the short and intermediate term periodicities in cosmic ray intensity during solar Cycle 23. Planet. Space Sci. 58(7-8), 1045. DOI. ADS.

    ADS  Article  Google Scholar 

  18. Chowdhury, P., Ray, P.C.: 2006, Periodicities of solar electron flare occurrence: analysis of Cycles 21-23. Mon. Not. Roy. Astron. Soc. 373, 1577. DOI. ADS.

    ADS  Article  Google Scholar 

  19. Chowdhury, P., Choudhary, D.P., Gosain, S., Moon, Y.-J.: 2015, Short-term periodicities in interplanetary, geomagnetic and solar phenomena during solar Cycle 24. Astrophys. Space Sci. 356(1), 7. DOI. ADS.

    ADS  Article  Google Scholar 

  20. Chowdhury, P., Kilcik, A., Yurchyshyn, V., Obridko, V.N., Rozelot, J.P.: 2019, Analysis of the hemispheric sunspot number time series for the solar Cycles 18 to 24. Solar Phys. 294(10), 142. DOI. ADS.

    ADS  Article  Google Scholar 

  21. Das, T.K., Chatterjee, T.N.: 1996, Periodicity in the basal component of solar radio emission. Mon. Not. Roy. Astron. Soc. 278, 6. DOI. ADS.

    ADS  Article  Google Scholar 

  22. Das, T.K., Nag, T.K.: 1998, Periodicity in the basal component of radio emission during maximum and minimum solar activity. Solar Phys. 179(2), 431. DOI. ADS.

    ADS  Article  Google Scholar 

  23. Das, T.K., Nag, T.K.: 1999, Frequency dependence of the periodicity of the intensity of the non-magnetic component of solar radio emission. Mon. Not. Roy. Astron. Soc. 303, 221. DOI. ADS.

    ADS  Article  Google Scholar 

  24. De, B.K., Chakraborty, M., Roy, R., Guha, A.: 2014, Midrange periodicity of basal component of solar radio flux during the extended solar minimum of Cycle 23-24. Bull. Astron. Soc. India 42(1), 1. ADS.

    ADS  Google Scholar 

  25. Dikpati, M., McIntosh, S.W., Bothun, G., Cally, P.S., Ghosh, S.S., Gilman, P.A., Umurhan, O.M.: 2018, Role of interaction between magnetic Rossby waves and tachocline differential rotation in producing solar seasons. Astrophys. J. 853(2), 144. DOI. ADS.

    ADS  Article  Google Scholar 

  26. Gachechiladze, T., Zaqarashvili, T.V., Gurgenashvili, E., Ramishvili, G., Carbonell, M., Oliver, R., Ballester, J.L.: 2019, Magneto-Rossby waves in the solar tachocline and the annual variations in solar activity. Astrophys. J. 874(2), 162. DOI. ADS.

    ADS  Article  Google Scholar 

  27. Gurgenashvili, E., Zaqarashvili, T.V., Kukhianidze, V., Oliver, R., Ballester, J.L., Ramishvili, G., Shergelashvili, B., Hanslmeier, A., Poedts, S.: 2016, Rieger-type periodicity during solar Cycles 14-24: estimation of dynamo magnetic field strength in the solar interior. Astrophys. J. 826(1), 55. DOI. ADS.

    ADS  Article  Google Scholar 

  28. Gurgenashvili, E., Zaqarashvili, T.V., Kukhianidze, V., Oliver, R., Ballester, J.L., Dikpati, M., McIntosh, S.W.: 2017, North–South asymmetry in Rieger-type periodicity during solar Cycles 19–23. Astrophys. J. 845(2), 137. DOI. ADS.

    ADS  Article  Google Scholar 

  29. Horne, J.H., Baliunas, S.L.: 1986, A prescription for period analysis of unevenly sampled time series. Astrophys. J. 302, 757. DOI. ADS.

    ADS  Article  Google Scholar 

  30. Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R.W., Larsen, R.M., Schou, J., Thompson, M.J., Toomre, J.: 2000, Dynamic variations at the base of the solar convection zone. Science 287(5462), 2456. DOI. ADS.

    ADS  Article  Google Scholar 

  31. Joshi, B., Pant, P., Manoharan, P.K.: 2006, Periodicities in sunspot activity during solar cycle 23. Astron. Astrophys. 452(2), 647. DOI. ADS.

    ADS  Article  Google Scholar 

  32. Katsavrias, C., Preka-Papadema, P., Moussas, X.: 2012, Wavelet analysis on solar wind parameters and geomagnetic indices. Solar Phys. 280(2), 623. DOI. ADS.

    ADS  Article  Google Scholar 

  33. Kilcik, A., Özgüç, A., Rozelot, J.P., Yeşilyurt, S.: 2008, Possible traces of solar activity effect on the surface air temperature of Turkey. J. Atmos. Solar-Terr. Phys. 70(13), 1669. DOI. ADS.

    ADS  Article  Google Scholar 

  34. Kilcik, A., Özgüç, A., Rozelot, J.P., Ataç, T.: 2010, Periodicities in solar flare index for Cycles 21 - 23 revisited. Solar Phys. 264(1), 255. DOI. ADS.

    ADS  Article  Google Scholar 

  35. Kilcik, A., Yurchyshyn, V., Donmez, B., Obridko, V.N., Ozguc, A., Rozelot, J.P.: 2018, Temporal and periodic variations of sunspot counts in flaring and non-flaring active regions. Solar Phys. 293, 63. DOI. ADS.

    ADS  Article  Google Scholar 

  36. Knaack, R., Stenflo, J.O.: 2005, Spherical harmonic decomposition of solar magnetic fields. Astron. Astrophys. 438(1), 349. DOI. ADS.

    ADS  Article  MATH  Google Scholar 

  37. Knaack, R., Stenflo, J.O., Berdyugina, S.V.: 2004, Periodic oscillations in the North-South asymmetry of the solar magnetic field. Astron. Astrophys. 418, L17. DOI. ADS.

    ADS  Article  Google Scholar 

  38. Kundu, M.R.: 1965, Solar Radio Astronomy. ADS.

    Google Scholar 

  39. Lara, A., Borgazzi, A., Mendes, O. Jr., Rosa, R.R., Domingues, M.O.: 2008, Short-period fluctuations in coronal mass ejection activity during solar Cycle 23. Solar Phys. 248(1), 155. DOI. ADS.

    ADS  Article  Google Scholar 

  40. Lean, J.L., Brueckner, G.E.: 1989, Intermediate-term solar periodicities - 100-500 days. Astrophys. J. 337, 568. DOI. ADS.

    ADS  Article  Google Scholar 

  41. Lobzin, V.V., Cairns, I.H., Robinson, P.A.: 2012, Rieger-type periodicity in the occurrence of solar type III radio bursts. Astrophys. J. Lett. 754, L28. DOI. ADS.

    ADS  Article  Google Scholar 

  42. Lomb, N.R.: 1976, Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447. DOI. ADS.

    ADS  Article  Google Scholar 

  43. Löptien, B., Gizon, L., Birch, A.C., Schou, J., Proxauf, B., Duvall, T.L., Bogart, R.S., Christensen, U.R.: 2018, Global-scale equatorial Rossby waves as an essential component of solar internal dynamics. Nat. Astron. 2, 568. DOI. ADS.

    ADS  Article  Google Scholar 

  44. Lou, Y.-Q.: 2000, Rossby-type wave-induced periodicities in flare activities and sunspot areas or groups during solar maxima. Astrophys. J. 540(2), 1102. DOI. ADS.

    ADS  Article  Google Scholar 

  45. Lou, Y.-Q., Wang, Y.-M., Fan, Z., Wang, S., Wang, J.X.: 2003, Periodicities in solar coronal mass ejections. Mon. Not. Roy. Astron. Soc. 345, 809. DOI. ADS.

    ADS  Article  Google Scholar 

  46. McIntosh, S.W., Leamon, R.J., Krista, L.D., Title, A.M., Hudson, H.S., Riley, P., Harder, J.W., Kopp, G., Snow, M., Woods, T.N., Kasper, J.C., Stevens, M.L., Ulrich, R.K.: 2015, The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability. Nat. Commun. 6, 6491. DOI. ADS.

    ADS  Article  Google Scholar 

  47. McIntosh, S.W., Cramer, W.J., Pichardo Marcano, M., Leamon, R.J.: 2017, The detection of Rossby-like waves on the Sun. Nat. Astron. 1, 0086. DOI. ADS.

    ADS  Article  Google Scholar 

  48. Mendoza, B., Velasco-Herrera, V.M.: 2011, On mid-term periodicities in sunspot groups and flare index. Solar Phys. 271(1-2), 169. DOI. ADS.

    ADS  Article  Google Scholar 

  49. Oliver, R., Ballester, J.L.: 1994, The North-South asymmetry of sunspot areas during SOLAR-CYCLE-22. Solar Phys. 152(2), 481. DOI. ADS.

    ADS  Article  Google Scholar 

  50. Oliver, R., Ballester, J.L.: 1995, Short-term periodicities in sunspot areas during solar Cycle 22. Solar Phys. 156(1), 145. DOI. ADS.

    ADS  Article  Google Scholar 

  51. Oliver, R., Carbonell, M., Ballester, J.L.: 1992, Intermediate-term periodicities in solar activity. Solar Phys. 137, 141. DOI. ADS.

    ADS  Article  Google Scholar 

  52. Oloketuyi, J., Liu, Y., Zhao, M.: 2019, The periodic and temporal behaviors of solar X-ray flares in solar Cycles 23 and 24. Astrophys. J. 874, 20. DOI. ADS.

    ADS  Article  Google Scholar 

  53. Ozguc, A., Atac, T.: 1994, The 73-day periodicity of the flare index during the current solar Cycle 22. Solar Phys. 150, 339. DOI. ADS.

    ADS  Article  Google Scholar 

  54. Özgüç, A., Ataç, T., Rybák, J.: 2002, Long-term periodicities in the flare index between the years 1966 - 2001. In: Wilson, A. (ed.) Solar Variability: From Core to Outer Frontiers, ESA Special Publication 2, 709. ADS.

    Google Scholar 

  55. Pap, J., Tobiska, W.K., Bouwer, S.D.: 1990, Periodicities of solar irradiance and solar activity indices - Part one. Solar Phys. 129(1), 165. DOI. ADS.

    ADS  Article  Google Scholar 

  56. Pedlosky, J.: 1987, Geophysical Fluid Dynamics. DOI.

    Google Scholar 

  57. Prabhakaran Nayar, S.R., Radhika, V.N., Revathy, K., Ramadas, V.: 2002, Wavelet analysis of solar, solar wind and geomagnetic parameters. Solar Phys. 208(2), 359. DOI. ADS.

    ADS  Article  Google Scholar 

  58. Rieger, E., Share, G.H., Forrest, D.J., Kanbach, G., Reppin, C., Chupp, E.L.: 1984, A 154-day periodicity in the occurrence of hard solar flares? Nature 312, 623. DOI. ADS.

    ADS  Article  Google Scholar 

  59. Rossby, C.G.: 1939, Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res. 2(1), 38.

    Article  Google Scholar 

  60. Scargle, J.D.: 1982, Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835. DOI. ADS.

    ADS  Article  Google Scholar 

  61. Sturrock, P.A., Bush, R., Gough, D.O., Scargle, J.D.: 2015, Indications of R-mode oscillations in SOHO/MDI solar radius measurements. Astrophys. J. 804(1), 47. DOI. ADS.

    ADS  Article  Google Scholar 

  62. Temmer, M., Rybák, J., Bendík, P., Veronig, A., Vogler, F., Otruba, W., Pötzi, W., Hanslmeier, A.: 2006, Hemispheric sunspot numbers \(R_{n}\) and \(R_{s}\) from 1945-2004: catalogue and N-S asymmetry analysis for solar Cycles 18-23. Astron. Astrophys. 447(2), 735. DOI. ADS.

    ADS  Article  Google Scholar 

  63. Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61. DOI. ADS.

    ADS  Article  Google Scholar 

  64. VanderPlas, J.T.: 2018, Understanding the Lomb–Scargle periodogram. Astrophys. J. Suppl. 236(1), 16. DOI. ADS.

    ADS  Article  Google Scholar 

  65. Yin, Z.-Q., Han, Y.-B., Ma, L.-H., Le, G.-M., Han, Y.-G.: 2007, Short-term period variation of relative sunspot numbers. Chin. J. Astron. Astrophys. 7(6), 823. DOI. ADS.

    ADS  Article  Google Scholar 

  66. Zaqarashvili, T.V., Carbonell, M., Oliver, R., Ballester, J.L.: 2010a, Magnetic Rossby waves in the solar tachocline and Rieger-type periodicities. Astrophys. J. 709(2), 749. DOI. ADS.

    ADS  Article  Google Scholar 

  67. Zaqarashvili, T.V., Carbonell, M., Oliver, R., Ballester, J.L.: 2010b, Quasi-biennial oscillations in the solar tachocline caused by magnetic Rossby wave instabilities. Astrophys. J. Lett. 724(1), L95. DOI. ADS.

    ADS  Article  Google Scholar 

  68. Ziȩba, S., Masłowski, J., Michalec, A., Kułak, A.: 2001, Periodicities in data observed during the minimum and the rising phase of solar Cycle 23; years 1996-1999. Astron. Astrophys. 377, 297. DOI. ADS.

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The data have been used in this paper accessed form NGDC. We thank the National Geophysical Data Centre (NGDC) Boulder, Department of Commerce, U.S for open data policy. We thank the referees for the helpful suggestions and comments on the estimation of significance levels and the physical interpretation of the obtained periods.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mahender Aroori.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aroori, M., Vemareddy, P., Chowdhury, P. et al. Mid-term Periodicities in Solar Radio Emission Corresponding to Sunspot Number During Solar Cycle 23. Sol Phys 296, 43 (2021). https://doi.org/10.1007/s11207-021-01793-6

Download citation

Keywords

  • Sun: sunspots
  • Sun: activity
  • Sun: atmosphere
  • Sun: radio emission
  • Sun: periodicity