Type-III Electron Beams: 3D Quasilinear Effects


A conventional model for the generation of Langmuir waves in Type-III radio bursts is based on a one-dimensional (1D) version of the quasilinear equations. In this model a wave with phase velocity \(v_{\phi }\) resonates with an electron with velocity \(v=v_{\phi }\), causing the waves to grow at a rate \(\propto {\mathrm{d}}F(v)/{\mathrm{d}}v>0\), where \(F(v)\) is the 1D-distribution function. The backreaction on the electrons drives the electrons towards a plateau distribution: \(\mathrm{d}F(v)/{\mathrm{d}}v\to 0\). In the 3D-generalization, none of these features apply: waves with phase speed \(v_{\phi }\) can resonate with electrons with speed \(v< v_{\phi }\), depending on the angle between the wave normal and the electron velocity, wave growth occurs only if the distribution function is both an increasing function of \(v\) and also has an anisotropic pitch-angle distribution, and the backreaction involves diffusion in both speed \(v\) and in pitch-angle \(\alpha \). In this article we discuss implications of the generalization from 1D to 3D on models for Type-III bursts. An effect that is absent in 1D, but may be important in 3D, is scattering of Langmuir waves by turbulence in the ambient plasma. Pitch-angle scattering by the scattered Langmuir waves may play an important role in the evolution of the Type-III beam.

This is a preview of subscription content, access via your institution.

Figure 1


  1. Appert, K., Tran, T.M., Vaclavik, J.: 1976, Two-dimensional quasi-linear evolution of the electron-beam-plasma instability. Phys. Rev. Lett. 37, 502. DOI. ADS.

    ADS  Article  Google Scholar 

  2. Celnikier, L.M., Muschietti, L., Goldman, M.V.: 1987, Aspects of interplanetary plasma turbulence. Astron. Astrophys. 181, 138. ADS.

    ADS  Google Scholar 

  3. Celnikier, L.M., Harvey, C.C., Jegou, R., Moricet, P., Kemp, M.: 1983, A determination of the electron density fluctuation spectrum in the solar wind, using the ISEE propagation experiment. Astron. Astrophys. 126, 293. ADS.

    ADS  Google Scholar 

  4. Dory, R.A., Guest, G.E., Harris, E.G.: 1965, Unstable electrostatic plasma waves propagating perpendicular to a magnetic field. Phys. Rev. Lett. 14, 131. DOI. ADS.

    ADS  Article  Google Scholar 

  5. Drummond, W.E., Pines, D.: 1962, Nonlinear stability of plasma oscillations. Nucl. Fusion Part 3, 1049.

    Google Scholar 

  6. Ergun, R.E., Larson, D., Lin, R.P., McFadden, J.P., Carlson, C.W., Anderson, K.A., Muschietti, L., McCarthy, M., Parks, G.K., Reme, H., Bosqued, J.M., D’Uston, C., Sanderson, T.R., Wenzel, K.P., Kaiser, M., Lepping, R.P., Bale, S.D., Kellogg, P., Bougeret, J.L.: 1998, Wind spacecraft observations of solar impulsive electron events associated with solar type III radio bursts. Astrophys. J. 503, 435. DOI. ADS.

    ADS  Article  Google Scholar 

  7. Ginzburg, V.L., Zheleznyakov, V.V.: 1958, On the possible mechanisms of sporadic solar radio emission (radiation in an isotropic plasma). Soviet Astron. 2, 653. ADS.

    ADS  Google Scholar 

  8. Goldman, M.V.: 1983, Progress and problems in the theory of type III solar radio emission. Solar Phys. 89, 403. DOI. ADS.

    ADS  Article  Google Scholar 

  9. Graham, D.B., Cairns, I.H.: 2014, Dynamical evidence for nonlinear Langmuir wave processes in type III solar radio bursts. J. Geophys. Res. 119, 2430. DOI. ADS.

    Article  Google Scholar 

  10. Grognard, R.J.M.: 1982, Numerical simulation of the weak turbulence excited by a beam of electrons in the interplanetary plasma. Solar Phys. 81, 173. DOI. ADS.

    ADS  Article  Google Scholar 

  11. Grognard, R.J.M.: 1984, Partial reconstruction of the initial conditions for streams of energetic electrons associated with a solar type III burst. Solar Phys. 94, 165. DOI. ADS.

    ADS  Article  Google Scholar 

  12. Harding, J.: 2020, 3D simulation of the quasilinear electron-Langmuir wave interaction in type III solar radio bursts. PhD thesis, University of Sydney.

  13. Harding, J.C., Cairns, I.H., Melrose, D.B.: 2020, Electron-Langmuir wave resonance in three dimensions. Phys. Plasmas 27, 020702. DOI. ADS.

    ADS  Article  Google Scholar 

  14. Hoyng, P., Melrose, D.B.: 1977, Legendre expansion of the quasi-linear equations for anisotropic particles and Langmuir waves. Astrophys. J. 218, 866. DOI. ADS.

    ADS  Article  Google Scholar 

  15. Lee, S.-Y., Ziebell, L.F., Yoon, P.H., Gaelzer, R., Lee, E.S.: 2019, Particle-in-cell and weak turbulence simulations of plasma emission. Astrophys. J. 871, 74. DOI. ADS.

    ADS  Article  Google Scholar 

  16. Li, B., Cairns, I.H.: 2013, Type III bursts produced by power law injected electrons in Maxwellian background coronal plasmas. J. Geophys. Res. 118, 4748. DOI. ADS.

    Article  Google Scholar 

  17. Li, B., Cairns, I.H., Robinson, P.A.: 2012, Frequency fine structures of type III bursts due to localized medium-scale density structures along paths of type III beams. Solar Phys. 279, 173. DOI. ADS.

    ADS  Article  Google Scholar 

  18. Li, B., Robinson, P.A., Cairns, I.H.: 2006a, Numerical simulations of type-III solar radio bursts. Phys. Rev. Lett. 96, 145005. DOI. ADS.

    ADS  Article  Google Scholar 

  19. Li, B., Robinson, P.A., Cairns, I.H.: 2006b, Numerical modeling of type III solar radio bursts in the inhomogeneous solar corona and interplanetary medium. Phys. Plasmas 13, 092902. DOI. ADS.

    ADS  Article  Google Scholar 

  20. Li, B., Willes, A.J., Robinson, P.A., Cairns, I.H.: 2003, Dynamics of beam-driven Langmuir and ion-acoustic waves including electrostatic decay. Phys. Plasmas 10, 2748. DOI. ADS.

    ADS  Article  Google Scholar 

  21. Lin, R.P., Potter, D.W., Gurnett, D.A., Scarf, F.L.: 1981, Energetic electrons and plasma waves associated with a solar type III radio burst. Astrophys. J. 251, 364. DOI. ADS.

    ADS  Article  Google Scholar 

  22. Melrose, D.B.: 1986, Instabilities in Space and Laboratory Plasmas, Cambridge University Press, Cambridge, 288. DOI. ADS.

    Google Scholar 

  23. Melrose, D.B., Cramer, N.F.: 1989, Quasi-linear relaxation of electrons interacting with an inhomogeneous distribution of Langmuir waves. Solar Phys. 123, 343. DOI. ADS.

    ADS  Article  Google Scholar 

  24. Melrose, D.B., Stenhouse, J.E.: 1977, Emission and absorption of Langmuir waves by anisotropic unmagnetized particles. Aust. J. Phys. 30, 481. DOI. ADS.

    ADS  Article  Google Scholar 

  25. Muschietti, L., Goldman, M.V., Newman, D.: 1985, Quenching of the beam-plasma instability by large-scale density fluctuations in 3 dimensions. Solar Phys. 96, 181. DOI. ADS.

    ADS  Article  Google Scholar 

  26. Nishikawa, K., Ryutov, D.: 1976, Relaxation of relativistic electron beam in a plasma with random density inhomogeneities. J. Phys. Soc. Japan 41, 1757. DOI.

    ADS  Article  Google Scholar 

  27. Ratcliffe, H., Kontar, E.P., Reid, H.A.S.: 2014, Large-scale simulations of solar type III radio bursts: flux density, drift rate, duration, and bandwidth. Astron. Astrophys. 572, A111. DOI. ADS.

    ADS  Article  Google Scholar 

  28. Reid, H.A.S., Ratcliffe, H.: 2014, A review of solar type III radio bursts. Res. Astron. Astrophys. 14, 773. DOI. ADS.

    ADS  Article  Google Scholar 

  29. Robinson, R.D. Jr.: 1977, A study of meter wavelength continuum radiation from the Sun. PhD thesis, Univ. Colorado, Boulder. ADS.

  30. Robinson, P.A.: 1992, Clumpy Langmuir waves in type-III radio sources. Solar Phys. 139, 147. DOI. ADS.

    ADS  Article  Google Scholar 

  31. Robinson, P.A., Cairns, I.H.: 1993, Stochastic growth theory of type III solar radio emission. Astrophys. J. 418, 506. DOI. ADS.

    ADS  Article  Google Scholar 

  32. Robinson, P.A., Cairns, I.H., Gurnett, D.A.: 1993, Clumpy Langmuir waves in type III radio sources: comparison of stochastic-growth theory with observations. Astrophys. J. 407, 790. DOI. ADS.

    ADS  Article  Google Scholar 

  33. Sturrock, P.A.: 1964, Type III Solar Radio Bursts SP-50, NASA, Washington, DC, 357.

    Google Scholar 

  34. Tsytovich, V.N.: 1966, Reviews of topical problems: statistical acceleration of particles in a turbulent plasma. Sov. Phys. Usp. 9, 370404. DOI. ADS.

    Article  Google Scholar 

  35. Vedenov, A.A., Velikhov, E.P., Sagdeev, R.Z.: 1961, Nonlinear oscillations of rarified plasma. Nucl. Fusion 1, 82.

    Article  Google Scholar 

  36. Ziebell, L.F., Gaelzer, R., Yoon, P.H.: 2008, Dynamics of Langmuir wave decay in two dimensions. Phys. Plasmas 15, 032303. DOI. ADS.

    ADS  Article  Google Scholar 

  37. Ziebell, L.F., Gaelzer, R., Pavan, J., Yoon, P.H.: 2008, Two-dimensional nonlinear dynamics of beam plasma instability. Plasma Phys. Control. Fusion 50, 085011. DOI. ADS.

    ADS  Article  Google Scholar 

  38. Ziebell, L.F., Yoon, P.H., Pavan, J., Gaelzer, R.: 2011, Two-dimensional quasilinear beam-plasma instability in inhomogeneous media. Plasma Phys. Control. Fusion 53, 085004. DOI. ADS.

    ADS  Article  Google Scholar 

  39. Ziebell, L.F., Yoon, P.H., Gaelzer, R., Pavan, J.: 2014, Plasma emission by weak turbulence processes. Astrophys. J. Lett. 795, L32. DOI. ADS.

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Donald B. Melrose.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Appendix A: Semiclassical Formalism

We start from the kinetic equation for the waves in semiclassical form based on the probability of spontaneous emission (e.g. Tsytovich, 1966; Melrose, 1986, p. 80) for Langmuir waves,

w L ( p , k ) = π e 2 ω p 2 ε e ħ ω L k 2 δ ( ω L k v cos χ ) , cos χ = cos α cos θ + sin α sin θ cos ( ϕ ψ ) ,

where \(\chi \) is the angle between \({\boldsymbol{k}}\) and \({\boldsymbol{v}}\), and \(\omega _{\mathrm{L}}\) is the frequency of the Langmuir waves, which we approximate by the plasma frequency [\(\omega _{\mathrm{p}}\)] assuming \(k\lambda _{\mathrm{De}}\ll 1\). In the axisymmetric case, the probability may be replaced by its average over azimuthal angle, which involves averaging the \(\delta \)-function in Equation 23 over azimuthal angle. Denoting this average by angular brackets and writing \(\cos \chi =\omega _{\mathrm{L}}/kv=v_{\phi }/v\), the average is zero except for \(\cos \alpha _{-}\le \cos \alpha \le \cos \alpha _{+}\) or \(\cos \theta _{-}\le \cos \theta \le \cos \theta _{+}\), where it is given by

$$ \langle \delta (\cos \chi -\cos \chi )\rangle = \frac{1}{\pi F(\alpha ,\theta ,\chi )}, $$


$$\begin{aligned} F(\alpha ,\theta ,\chi ) =&(1+2\cos \alpha \cos \theta \cos \chi - \cos ^{2}\alpha -\cos ^{2}\theta -\cos ^{2}\chi )^{1/2}, \\ \cos \alpha _{\pm } =&\cos (\theta \mp \chi ), \qquad \cos \theta _{\pm }=\cos (\alpha \mp \chi ). \end{aligned}$$

The identities

$$ \frac{\partial F}{\partial \cos \theta }=- \frac{\cos \theta -\cos \alpha \cos \chi }{F}, \qquad \frac{\partial ^{2}F}{\partial \cos \theta \partial \cos \alpha }= \sin ^{2}\chi \frac{\partial }{\partial \cos \chi }\frac{1}{F}, $$

with \(F=F(\alpha ,\theta ,\chi )\), and the integral

$$ \int _{\cos \alpha _{-}}^{\cos \alpha _{+}} \frac{\mathrm{d}\cos \alpha }{F(\alpha ,\theta ,\chi )}=\pi $$

is used below.

Appendix B: Balancing Focusing and Diffusion

The Fokker–Planck equation for the evolution of the angular dependence of a distribution function \(f\) due to systematic changes in pitch angle, described by a Fokker–Planck coefficient [\(\langle {\mathrm{d}}\cos \alpha /{\mathrm{d}}t\rangle \)] and a diffusion coefficient [\(D_{\alpha \alpha }\)], is

$$ \frac{\partial f}{\partial t}=\frac{\partial }{\partial \cos \alpha } \left [-\left \langle \frac{\mathrm{d}\cos \alpha }{\mathrm{d}t}\right \rangle f +D_{\alpha \alpha }\frac{\partial f}{\partial \cos \alpha } \right ]. $$

For an electron beam propagating towards decreasing \(B(s)\), conservation of the magnetic moment implies \(\sin ^{2}\alpha /B=\text{constant}\), and hence

$$ \left \langle \frac{\mathrm{d}\cos \alpha }{\mathrm{d}t}\right \rangle = \frac{1}{2\cos \alpha }\frac{v_{\mathrm{b}}}{L_{\mathrm{b}}}, \qquad L_{\mathrm{b}}=- \left |\frac{\mathrm{d}}{\mathrm{d}s}\ln B(s)\right |^{-1}. $$

Assuming isotropic scattering, such that \(D_{\alpha \alpha }\) does not depend on \(\alpha \), the Fokker–Planck Equation 28 with Equation 29 may be written as

$$ \frac{\partial f}{\partial t}=\frac{\partial }{\partial \cos \alpha } \left [ D_{\alpha \alpha }(\cos \alpha )^{\tau } \frac{\partial }{\partial \cos \alpha }(\cos \alpha )^{-\tau } f\right ], \qquad \tau =\frac{v_{\mathrm{b}}}{2L_{\mathrm{b}}D_{\alpha \alpha }}. $$

The steady-state solution of Equation 30 is

$$ f\propto (\cos \alpha )^{\tau }. $$

B.1 Absorption Coefficient for Distribution Equation 6

The absorption coefficient for the distribution in Equation 6 may be evaluated by expanding \(\phi (\alpha )\) in Legendre polynomials and using results derived by Melrose and Stenhouse (1977). For \(N=0,1,2\) one uses

$$ P_{1}(x)=x,\quad P_{3}(x)=\frac{1}{2}(5x^{3}-3x),\quad P_{5}(x)= \frac{1}{8}(63x^{5}-70x^{3}+15x), $$

to write \(\cos ^{2N+1}\alpha \) in terms of Legendre polynomials. The integrals involved in evaluating Equation 13 are then of the form

$$ \frac{1}{\pi }\int _{\cos \alpha _{-}}^{\cos \alpha _{+}} \frac{P_{l}(\alpha )\, \mathrm{d}\cos \alpha }{[(\cos \alpha _{+}-\cos \alpha )(\cos \alpha -\cos \alpha _{-})]^{1/2}} =P_{l}(\cos \theta )P_{l}(\cos \chi ). $$

One finds

$$ \gamma _{\mathrm{A}}(k,\theta )= \frac{-2\pi ^{2}\omega _{\mathrm{p}}^{4}}{n_{\mathrm{e}}k^{3}}\frac{1}{v_{\phi }} \int _{v_{\phi }}^{\infty }{\mathrm{d}}vf_{0}(v)\sum _{n=0}^{N}a^{N}_{2n+1} P_{2n+1}( \cos \theta )P'_{2n+1}(\cos \chi ), $$


$$ a^{0}_{1}=1,\qquad a^{1}_{1}=\frac{3}{5}, \quad a^{1}_{3}=\frac{2}{5}, \qquad a^{2}_{1}=\frac{3}{7}, \quad a^{2}_{3}=\frac{4}{9}, \quad a^{2}_{5}= \frac{8}{63}. $$

The result given by Equation 14 for \(\cos \theta =1\) follows from Equations 34 and 35 with \(P_{l}(1)=1\).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Melrose, D.B., Harding, J. & Cairns, I.H. Type-III Electron Beams: 3D Quasilinear Effects. Sol Phys 296, 42 (2021). https://doi.org/10.1007/s11207-021-01783-8

Download citation


  • Solar flares
  • Radio bursts
  • Plasma instabilities