Aggregation Characteristics of the Sun’s Large-Scale Magnetic Field Associated with a Global Magnetic Anomaly in the Last Extended Solar Cycle

Abstract

The solar cycle represents the Sun’s periodically changing magnetic state, which is potentially subject to global magnetic anomalies emerging on it. What the characteristics are of the Sun’s large-scale magnetic field playing roles in these anomalies is a key to clarifying how the Sun deviates from its normal magnetic state. This article reports aggregation characteristics of the large-scale magnetic field associated with a global magnetic anomaly that emerged when the Sun went through one of the longest solar cycles in two hundred years. The characteristics were identified by extracting cluster feature values of solar surface magnetic fields via a population ecological method from synoptic maps, obtained by the longest homogeneous series of magnetic field observations for the past several decades. We found that the anomaly was due to the uneven clustering of positive and negative surface magnetic fields that occurred during the solar minimum leading to the last extended solar cycle. Our findings may provide new insight into magnetic field characteristics peculiar to a solar minimum with an extended cycle length.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: methods of calculating coronal fields. Solar Phys. 9, 131.

    ADS  Article  Google Scholar 

  2. Bakus, G.: 2007, Quantitative Analysis of Marine Biological Communities: Field Biology and Environment, Wiley-Interscience, Hoboken. Wiley.

    Google Scholar 

  3. Borrero, J.M., Ichimoto, K.: 2011, Magnetic structure of sunspots. Living Rev. Solar Phys. 8, 4.

    ADS  Article  Google Scholar 

  4. Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: 2014, Revisiting the sunspot number. A 400-year perspective on the solar cycle. Space Sci. Rev. 186, 35.

    ADS  Article  Google Scholar 

  5. Clyne, J., Mininni, P., Norton, A., Rast, M.: 2007, Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation. New J. Phys. 9, 301.

    ADS  Article  Google Scholar 

  6. Delaboudinire, J., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., Van Dessel, E.L.: 1995, EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291.

    ADS  Article  Google Scholar 

  7. Duvall, T.L. Jr., Wilcox, J.M., Svalgaard, L., Scherrer, P.H., McIntosh, P.S.: 1977, Comparison of \(\text{H}\alpha \) synoptic charts with the large-scale solar magnetic field as observed at Stanford. Solar Phys. 55, 63.

    ADS  Article  Google Scholar 

  8. Fan, Y.: 2001, The emergence of a twisted \(\Omega \)-tube into the solar atmosphere. Astrophys. J. Lett. 554, 111.

    ADS  Article  Google Scholar 

  9. Hale, G.E.: 1924, Sun-spots as magnets and the periodic reversal of their polarity. Nature 113, 105.

    ADS  Article  Google Scholar 

  10. Hathaway, D.H.: 2015, The solar cycle. Living Rev. Solar Phys. 12, 1.

    ADS  Article  Google Scholar 

  11. Hoeksema, T., Scherrer, P.: 1986, An atlas of photospheric magnetic field observations and computed coronal magnetic fields: 1976–1985. Solar Phys. 105, 205.

    ADS  Article  Google Scholar 

  12. Imada, S., Fujiyama, M.: 2018, Effect of magnetic field strength on solar differential rotation and meridional circulation. Astrophys. J. 864, L5.

    ADS  Article  Google Scholar 

  13. Jeong, H., Chae, J.: 2007, Magnetic helicity injection in active regions. Astrophys. J. 671, 1022.

    ADS  Article  Google Scholar 

  14. Knaack, R., Stenflo, J.O., Berdyugina, S.V.: 2005, Evolution and rotation of large-scale photospheric magnetic fields of the Sun during cycles 21–23. Periodicities, North–South asymmetries and r-mode signatures. Astron. Astrophys. 438, 1067.

    ADS  Article  Google Scholar 

  15. Lites, B.W., Low, B.C., Martines Pillet, V., Seagraves, P., Skumanich, A., Frank, Z.A., Shine, R.A., Tsuneta, S.: 1995, The possible ascent of a closed magnetic system through the photosphere. Astrophys. J. 446, 877L.

    ADS  Article  Google Scholar 

  16. Low, B.C.: 1996, Solar activity and the corona. Solar Phys. 167, 217.

    ADS  Article  Google Scholar 

  17. Magara, T.: 2009, Characteristic development of magnetic shear in a flare-producing sunspot obtained from vector magnetic field measurements by Hinode. Astrophys. J. 702, 386.

    ADS  Article  Google Scholar 

  18. Magara, T.: 2017, An inversion method for deriving physical properties of a subsurface magnetic field from surface magnetic field evolution I. Application to simulated data. J. Korean Astron. Soc. 50, 179.

    ADS  Google Scholar 

  19. Maunder, E.W.: 1922, The Sun and Sun-spots, 1820–1920. Mon. Not. Roy. Astron. Soc. 82, 534.

    ADS  Article  Google Scholar 

  20. Morisita, M.: 1959, Measuring of the dispersion and analysis of distribution patterns. Mem. Fac. Sci. Kyushu Univ., Ser. E 2, 215.

    Google Scholar 

  21. Muoz-Jaramillo, A., Vaquero, J.M.: 2019, Visualization of the challenges and limitations of the long-term sunspot number record. Nat. Astron. 3, 205.

    ADS  Article  Google Scholar 

  22. Nakamizo, A., Tanaka, T., Kubo, Y., Kamei, S., Shimazu, H., Shinagawa, H.: 2009, Development of the 3-D MHD model of the solar corona-solar wind combining system. J. Geophys. Res. 114, A07109.

    ADS  Google Scholar 

  23. Reeves, E.M., Huber, M.C.E., Timothy, J.G.: 1977, Extreme UV spectroheliometer on the Apollo Telescope Mount. Appl. Opt. 16, 837.

    ADS  Article  Google Scholar 

  24. Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442.

    ADS  Article  Google Scholar 

  25. Scherrer, P.H., Wilcox, J.M., Svalgaard, L., Duvall, T.L., Dittmer, P.H., Gustafson, E.K.: 1977, The mean magnetic field of the Sun: observations at Stanford. Solar Phys. 54, 353.

    ADS  Article  Google Scholar 

  26. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I. (MDI Engineering Team): 1995, The solar oscillations investigation – Michelson Doppler Imager. Solar Phys. 162, 129.

    ADS  Article  Google Scholar 

  27. Schwabe, M.: 1844, Sonnenbeobachtungen im Jahre 1843. Von Herrn Hofrath Schwabe in Dessau. Astron. Nachr. 21, 233.

    ADS  Article  Google Scholar 

  28. Siu-Tapia, A., Lagg, A., van Noort, M., Rempel, M., Solanki, S.: 2019, Superstrong photospheric magnetic fields in sunspot penumbrae. Astron. Astrophys. 631, 99.

    Article  Google Scholar 

  29. Snyder, J.P.: 1987, Map projections – a working manual. US Government Printing Office, 1395.

  30. Sokoloff, D., Nesme-Ribes, E.: 1994, The Maunder minimum: a mixed-parity dynamo mode? Astron. Astrophys. 288, 293.

    ADS  Google Scholar 

  31. Solanki, S.K., Schüssler, M., Fligge, M.: 2000, Evolution of the Sun’s large-scale magnetic field since the Maunder minimum. Nature 408, 445.

    ADS  Article  Google Scholar 

  32. Stix, M.: 1991, The Sun: An Introduction, Astronomy and Astrophysics Library, Springer, Berlin, 301.

    Google Scholar 

  33. Tanaka, K.: 1991, Studies on a very flare-active \(\delta \) group: peculiar \(\delta\) spot evolution and inferred subsurface magnetic rope structure. Solar Phys. 136, 13.

    Article  Google Scholar 

  34. Virtanen, I., Mursula, K.: 2017, Photospheric and coronal magnetic fields in six magnetographs. II. Harmonic scaling of field intensities. Astron. Astrophys. 604, 7.

    ADS  Article  Google Scholar 

  35. Zwaan, C.: 1985, The emergence of magnetic flux. Solar Phys. 100, 397.

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge detailed comments and suggestions by G. Choe and S. Solanki which were very helpful for improving the manuscript. We also appreciate the reviewer’s useful comments. We used the synoptic charts of the Sun’s large-scale magnetic field provided by Wilcox Solar Observatory, Stanford University (http://wso.stanford.edu). The EUV and MDI data used here are produced by the SOHO/EIT and SOHO/MDI Consortiums; SOHO is a joint ESA-NASA program. Figure 4a was made using VAPOR (Clyne et al., 2007). This work was financially supported by the Core Research Program (NRF-2017R1A2B4002383) through the National Research Foundation of Korea (NRF) funded by the Korean government (MIST), as well as by the BK21 plus program through the NRF.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Magara.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Magara, T., An, J., Lee, H. et al. Aggregation Characteristics of the Sun’s Large-Scale Magnetic Field Associated with a Global Magnetic Anomaly in the Last Extended Solar Cycle. Sol Phys 296, 41 (2021). https://doi.org/10.1007/s11207-021-01782-9

Download citation

Keywords

  • Magnetic fields, photosphere
  • Solar cycle, observations