Timing Terminators: Forecasting Sunspot Cycle 25 Onset

Abstract

Recent research has demonstrated the existence of a new type of solar event, the “terminator.” Unlike the Sun’s signature events, flares and coronal mass ejections, the terminator most likely originates in the solar interior, at or near the tachocline. The terminator signals the end of a magnetic activity cycle at the Sun’s equator and the start of a sunspot cycle at mid-latitudes. Observations indicate that the time difference between these events is very short, less than a solar rotation, in the context of the sunspot cycle. As the (definitive) start and end point of solar activity cycles the precise timing of terminators should permit new investigations into the meteorology of our star’s atmosphere. In this article we use a standard method in signal processing, the Hilbert transform, to identify a mathematically robust signature of terminators in sunspot records and in radiative proxies. Using a linear extrapolation of the Hilbert phase of the sunspot number and F10.7 cm solar radio flux time series we can achieve higher fidelity historical terminator timing than previous estimates have permitted. Further, this method presents a unique opportunity to project, from analysis of sunspot data, when the next terminator will occur, May 2020 (\(+4\), −1.5 months), and trigger the growth of Sunspot Cycle 25.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Notes

  1. 1.

    And his Hale Prize lecture, St. Louis American Astronomical Society - Solar Physics Division meeting.

  2. 2.

    The present consecutive active region numbering system only started in January 1972.

References

  1. Babcock, H.W.: 1961, The topology of the Sun’s magnetic field and the 22-YEAR cycle. Astrophys. J.133, 572. DOI . ADS .

    ADS  Article  Google Scholar 

  2. Barnhart, B.L., Eichinger, W.E.: 2011, Analysis of sunspot variability using the Hilbert–Huang transform. Solar Phys.269(2), 439. DOI .

    ADS  Article  Google Scholar 

  3. Bracewell, R.N.: 2000, The Fourier Transform and Its Applications, McGraw-Hill, New York, 267.

    Google Scholar 

  4. Chapman, S.C., Lang, P.T., Dendy, R.O., Giannone, L., Watkins, N.W.: 2018a, Control system–plasma synchronization and naturally occurring edge localized modes in a tokamak. Phys. Plasmas25, 062511. DOI . ADS .

    ADS  Article  Google Scholar 

  5. Chapman, S.C., Lang, P.T., Dendy, R.O., Watkins, N.W., Dunne, M., Giannone, L., ASDEX Upgrade Team, EUROfusion MST1 Team: 2018b, Intrinsic ELMing in ASDEX upgrade and global control system–plasma self-entrainment. Nucl. Fusion58, 126003. DOI . ADS .

    ADS  Article  Google Scholar 

  6. Cleveland, W.S.: 1979, Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc.74(368), 829. DOI .

    MathSciNet  Article  MATH  Google Scholar 

  7. de Toma, G., Gibson, S., Emery, B., Kozyra, J.: 2010, Solar cycle 23: an unusual solar minimum? AIP Conf. Proc.1216(1), 667. DOI .

    ADS  Article  Google Scholar 

  8. Dikpati, M., McIntosh, S.W., Chatterjee, S., Banerjee, D., Yellin-Bergovoy, R., Srivastava, A.: 2019, Triggering the birth of new cycle’s sunspots by solar tsunami. Sci. Rep.9, 2035. DOI . ADS .

    ADS  Article  Google Scholar 

  9. Gao, P.X.: 2016, Long-term trend of sunspot numbers. Astrophys. J.830(2), 140. DOI . ADS .

    ADS  Article  Google Scholar 

  10. Golub, L., Krieger, A.S., Silk, J.K., Timothy, A.F., Vaiana, G.S.: 1974, Solar X-ray bright points. Astrophys. J. Lett.189, L93. DOI . ADS .

    ADS  Article  Google Scholar 

  11. Hara, H., Nakakubo-Morimoto, K.: 2003, Variation of the X-ray bright point number over the solar activity cycle. Astrophys. J.589, 1062. DOI . ADS .

    ADS  Article  Google Scholar 

  12. Kolotkov, D.Y., Nakariakov, V.M., Kupriyanova, E.G., Ratcliffe, H., Shibasaki, K.: 2015, Multi-mode quasi-periodic pulsations in a solar flare. Astron. Astrophys.574, A53. DOI . ADS .

    ADS  Article  Google Scholar 

  13. Kuhn, J.R.: 2004, Irradiance and solar cycle variability: clues in cycle phase properties. Adv. Space Res.34(2), 302. DOI . ADS .

    ADS  Article  Google Scholar 

  14. Leamon, R.J., McIntosh, S.W., Marsh, D.R.: 2018, Termination of Solar Cycles and Correlated Tropospheric Variability. arXiv e-prints. arXiv . ADS .

  15. Leighton, R.B.: 1969, A magneto-kinematic model of the solar cycle. Astrophys. J.156, 1. DOI . ADS .

    ADS  Article  Google Scholar 

  16. Lynch, B.J., Gruesbeck, J.R., Zurbuchen, T.H., Antiochos, S.K.: 2005, Solar cycle-dependent helicity transport by magnetic clouds. J. Geophys. Res.110, A08107. DOI . ADS .

    ADS  Article  Google Scholar 

  17. Marple, S.L.: 1999, Computing the discrete-time “analytic” signal via FFT. IEEE Trans. Signal Process.47(9), 2600. DOI . ADS .

    ADS  Article  MATH  Google Scholar 

  18. Maunder, E.W.: 1904, Note on the distribution of sun-spots in heliographic latitude, 1874 – 1902. Mon. Not. Roy. Astron. Soc.64, 747. DOI . ADS .

    ADS  Article  Google Scholar 

  19. McIntosh, S.W., Gurman, J.B.: 2005, Nine years of EUV bright points. Solar Phys.228, 285. DOI . ADS .

    ADS  Article  Google Scholar 

  20. McIntosh, S.W., Leamon, R.J.: 2014, On magnetic activity band overlap, interaction, and the formation of complex solar active regions. Astrophys. J. Lett.796, L19. DOI . ADS .

    ADS  Article  Google Scholar 

  21. McIntosh, S.W., Leamon, R.J.: 2017, Deciphering solar magnetic activity: spotting Solar Cycle 25. Front. Astron. Space Sci.4, 4. DOI . ADS .

    ADS  Article  Google Scholar 

  22. McIntosh, S.W., Leamon, R.J., Gurman, J.B., Olive, J.-P., Cirtain, J.W., Hathaway, D.H., Burkepile, J., Miesch, M., Markel, R.S., Sitongia, L.: 2013, Hemispheric asymmetries of solar photospheric magnetism: radiative, particulate, and heliospheric impacts. Astrophys. J.765, 146. DOI . ADS .

    ADS  Article  Google Scholar 

  23. McIntosh, S.W., Wang, X., Leamon, R.J., Davey, A.R., Howe, R., Krista, L.D., Malanushenko, A.V., Markel, R.S., Cirtain, J.W., Gurman, J.B., Pesnell, W.D., Thompson, M.J.: 2014a, Deciphering solar magnetic activity. I. On the relationship between the sunspot cycle and the evolution of small magnetic features. Astrophys. J.792, 12. DOI . ADS .

    ADS  Article  Google Scholar 

  24. McIntosh, S.W., Wang, X., Leamon, R.J., Scherrer, P.H.: 2014b, Identifying potential markers of the Sun’s giant convective scale. Astrophys. J. Lett.784, L32. DOI . ADS .

    ADS  Article  Google Scholar 

  25. McIntosh, S.W., Leamon, R.J., Krista, L.D., Title, A.M., Hudson, H.S., Riley, P., Harder, J.W., Kopp, G., Snow, M., Woods, T.N., Kasper, J.C., Stevens, M.L., Ulrich, R.K.: 2015, The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability. Nat. Commun.6, 6491. DOI . ADS .

    ADS  Article  Google Scholar 

  26. McIntosh, S.W., Cramer, W.J., Pichardo Marcano, M., Leamon, R.J.: 2017, The detection of Rossby-like waves on the Sun. Nat. Astron.1, 0086. DOI . ADS .

    ADS  Article  Google Scholar 

  27. McIntosh, S.W., Leamon, R.J., Egeland, R., Dikpati, M., Fan, Y., Rempel, M.: 2019, What the sudden death of solar cycles can tell us about the nature of the solar interior. Solar Phys.294(7), 88. DOI .

    ADS  Article  Google Scholar 

  28. McNish, A.G., Lincoln, J.V.: 1949, Prediction of sunspot numbers. Eos Trans. AGU30(5), 673. DOI . ADS .

    Article  Google Scholar 

  29. Meyer, P., Parker, E.N., Simpson, J.A.: 1956, Solar cosmic rays of February, 1956 and their propagation through interplanetary space. Phys. Rev.104, 768. DOI .

    ADS  Article  Google Scholar 

  30. Morgan, H., Taroyan, Y.: 2017, Global conditions in the solar corona from 2010 to 2017. Sci. Adv.3(7), e1602056. DOI .

    ADS  Article  Google Scholar 

  31. Paluš, M., Novotná, D.: 1999, Sunspot cycle: a driven nonlinear oscillator? Phys. Rev. Lett.83, 3406. DOI .

    ADS  Article  Google Scholar 

  32. Parker, E.N.: 1955, Hydromagnetic dynamo models. Astrophys. J.122, 293. DOI . ADS .

    ADS  MathSciNet  Article  Google Scholar 

  33. Pesnell, W.: 2008, Predictions of Solar Cycle 24. Solar Phys.252, 209. DOI .

    ADS  Article  Google Scholar 

  34. Pikovsky, A., Rosenblum, M., Kurths, J., Hilborn, R.C.: 2002, Synchronization: a universal concept in nonlinear science. Am. J. Phys.70(6), 655. DOI . ADS .

    ADS  Article  Google Scholar 

  35. Rial, J.A., Oh, J., Reischmann, E.: 2013, Synchronization of the climate system to eccentricity forcing and the 100,000-year problem. Nat. Geosci.6(4), 289. DOI . ADS .

    ADS  Article  Google Scholar 

  36. Savitzky, A., Golay, M.J.E.: 1964, Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem.36(8), 1627. DOI .

    ADS  Article  Google Scholar 

  37. Schonfeld, S.J., White, S.M., Hock-Mysliwiec, R.A., McAteer, R.T.J.: 2017, The slowly varying corona. I. Daily differential emission measure distributions derived from EVE spectra. Astrophys. J.844(2), 163. DOI .

    ADS  Article  Google Scholar 

  38. Schwabe, H.: 1844, Sonnenbeobachtungen im Jahre 1843. Von Herrn Hofrath Schwabe in Dessau. Astron. Nachr.21, 233. ADS .

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977. RJL acknowledges support from NASA’s Living With a Star Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert J. Leamon.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leamon, R.J., McIntosh, S.W., Chapman, S.C. et al. Timing Terminators: Forecasting Sunspot Cycle 25 Onset. Sol Phys 295, 36 (2020). https://doi.org/10.1007/s11207-020-1595-3

Download citation

Keywords

  • Solar cycle
  • Observations