Skip to main content

Propagating Conditions and the Time of ICME Arrival: A Comparison of the Effective Acceleration Model with ENLIL and DBEM Models

Abstract

The Effective Acceleration Model (EAM) predicts the Time-of-Arrival (ToA) of the Coronal Mass Ejection (CME) driven shock and the average speed within the sheath at 1 AU. The model is based on the assumption that the ambient solar wind interacts with the interplanetary CME (ICME) resulting in constant acceleration or deceleration. The upgraded version of the model (EAMv3), presented here, incorporates two basic improvements: (i) a new technique for the calculation of the acceleration (or deceleration) of the ICME from the Sun to 1 AU and (ii) a correction for the CME plane-of-sky speed. A validation of the upgraded EAM model is performed via comparisons to predictions from the ensemble version of the Drag-Based model (DBEM) and the WSA-ENLIL+Cone ensemble model. A common sample of 16 CMEs/ICMEs, in 2013 – 2014, is used for the comparison. Basic performance metrics such as the mean absolute error (MAE), mean error (ME) and root mean squared error (RMSE) between observed and predicted values of ToA are presented. MAE for EAM model was \(8.7\pm 1.6\) hours while for DBEM and ENLIL was \(14.3\pm 2.2\) and \(12.8\pm 1.7\) hours, respectively. ME for EAM was \(-1.4\pm 2.7\) hours in contrast with \(-9.7\pm 3.4\) and \(-6.1\pm 3.3\) hours from DBEM and ENLIL. We also study the hypothesis of stronger deceleration in the interplanetary (IP) space utilizing the EAMv3 and DBEM models. In particularly, the DBEM model perform better when a greater value of drag parameter, of order of a factor of 3, is used in contrast to previous studies. EAMv3 model shows a deceleration of ICMEs at greater distances, with a mean value of 0.72 AU.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

References

  1. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, Solar Phys. 162, 357. DOI.

    ADS  Article  Google Scholar 

  2. Burkepile, J.T., Hundhausen, A.J., Stanger, A.L., St. Cyr, O.C., Seiden, J.A.: 2004, J. Geophys. Res. 109, 3103. DOI.

    Article  Google Scholar 

  3. Colaninno, R.C., Vourlidas, A., Wu, C.C.: 2013, J. Geophys. Res. 118, 6866. DOI.

    Article  Google Scholar 

  4. Corona-Romero, P., Gonzalez-Esparza, J.A., Aguilar-Rodriguez, E., De-la Luz, V., Mejia-Ambriz, J.C.: 2015, Solar Phys. 290, 1. DOI.

    Article  Google Scholar 

  5. Corona-Romero, P., Gonzalez-Esparza, J.A., Perez-Alanis, C.A., Aguilar-Rodriguez, E., de-la Luz, V., Mejia-Ambriz, J.C.: 2017, Space Weather 15, 464. DOI.

    ADS  Article  Google Scholar 

  6. Domingo, V., Fleck, B., Poland, A.I.: 1995, Solar Phys. 162, 1. DOI.

    ADS  Article  Google Scholar 

  7. Dumbovic, M., Devos, A., Vrsnak, B., Sudar, D., Rodriguez, L., Ruzdjak, D., Leer, K., Vennerstrom, S., Veronig, A.: 2015, Solar Phys. 290, 579. DOI.

    ADS  Article  Google Scholar 

  8. Dumbovic, M., Calogovic, J., Vrsnak, B., Temmer, M., Mays, M.L., Veronig, A., Piantschitsch, I.: 2018, Astrophys. J. 854, 180. DOI.

    ADS  Article  Google Scholar 

  9. Fry, C.D., Sun, W., Deehr, C.S., Dryer, M., Smith, Z., Akasofu, S.-I., Tokumaru, M., Kojima, M.: 2001, J. Geophys. Res. 106, 20,985. DOI.

    ADS  Article  Google Scholar 

  10. Gopalswamy, N.: 2009, In: Tsuda, T., Fujii, R., Shibata, K., Geller, M.A. (eds.) Climate and Weather of the Sun-Earth System (CAWSES) Selected Papers from the 2007 Kyoto Symposium, Terrapub, Tokyo, 77.

    Google Scholar 

  11. Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M.L., Howard, R.A.: 2001, J. Geophys. Res. 106(29), 207. DOI.

    Article  Google Scholar 

  12. Gopalswamy, N., Lara, A., Manoharan, P.K., Howard, R.A.: 2005, Adv. Space Res. 36, 2289. DOI.

    ADS  Article  Google Scholar 

  13. Gosling, J.T.: 1993, J. Geophys. Res. 98, 18937. DOI.

    ADS  Article  Google Scholar 

  14. Hanslmeier, A.: 2010, In: Gopalswamy, N., Hasan, S., Ambastha, A. (eds.) Heliophysical Processes, Astrophysics and Space Science Proceedings, Springer, Berlin. DOI.

    Chapter  Google Scholar 

  15. Hess, P., Zhang, J.: 2015, Astrophys. J. 812, 144. DOI.

    ADS  Article  Google Scholar 

  16. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, Space Sci. Rev. 136, 5. DOI.

    ADS  Article  Google Scholar 

  17. Kay, C., Mays, M.L., Verbeke, C.: 2020, Space Weather 18, e2019SW002382. DOI.

    ADS  Article  Google Scholar 

  18. Kilpua, E.K.J., Mierla, M., Rodriguez, L., Zhukov, A.N., Srivastava, N., West, M.J.: 2012, Solar Phys. 279, 477. DOI.

    ADS  Article  Google Scholar 

  19. Leblanc, Y., Dulk, G.A., Vourlidas, A., Bougeret, J.L.: 2001, J. Geophys. Res. 106(A11), 25301. DOI.

    ADS  Article  Google Scholar 

  20. Lee, H., Moon, Y.J., Na, H., Jang, S., Lee, J.O.: 2015, J. Geophys. Res. 120, 10,237. DOI.

    Article  Google Scholar 

  21. Liu, Y.D., Luhmann, J.G., Lugaz, N., Möstl, C., Davies, J.A., Bale, S.D., Lin, R.P.: 2013, Astrophys. J. 769, 45. DOI.

    ADS  Article  Google Scholar 

  22. Liu, J., Ye, Y., Shen, C., Wang, Y., Erdelyi, R.: 2018, Astrophys. J. 855, 109. DOI.

    ADS  Article  Google Scholar 

  23. Makela, P., Gopalswamy, N., Yashiro, S.: 2016, Space Weather 14, 368. DOI.

    ADS  Article  Google Scholar 

  24. Manchester, W., Kilpua, E.K.J., Liu, Y.D., Lugaz, N., Riley, P., et al.: 2017, Space Sci. Rev. 212, 1159. DOI.

    ADS  Article  Google Scholar 

  25. Mays, M.L., Taktakishvili, A., Pulkkinen, A., MacNeice, P.J., Rastatter, L., Odstrcil, D., Jian, L.K., Richardson, I.G., LaSota, J.A., Zheng, Y., Kuznetsova, M.M.: 2015, Solar Phys. 290, 1775. DOI.

    ADS  Article  Google Scholar 

  26. McComas, D., Bame, S., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W.: 1998, Space Sci. Rev. 86, 563. DOI.

    ADS  Article  Google Scholar 

  27. McKenna-Lawlor, S.M.P., Dryer, M., Kartalev, M.D., Smith, Z., Fry, C.D., Sun, W., Deehr, C.S., Kecskemety, K., Kudela, K.: 2006, J. Geophys. Res. 111, A11103. DOI.

    ADS  Article  Google Scholar 

  28. Mierla, M., Davila, J., Thompson, W., Inhester, B., Srivastava, N., Kramar, M., St. Cyr, O.C., Stenborg, G., Howard, R.A.: 2008, Solar Phys. 252, 385. DOI.

    ADS  Article  Google Scholar 

  29. Millward, G., Biesecker, D., Pizzo, V., de Koning, C.A.: 2013, Space Weather 11, 57. DOI.

    ADS  Article  Google Scholar 

  30. Mostl, C., Amla, K., Hall, J.R., Liewer, P.C., De Jong, E.M., Colaninno, R.C., et al.: 2014, Astrophys. J. 787, 119. DOI.

    ADS  Article  Google Scholar 

  31. Mostl, C., Isavnin, A., Boakes, P.D., Kilpua, E.K.J., Davies, J.A., et al.: 2017, Space Weather 15, 955. DOI.

    ADS  Article  Google Scholar 

  32. Napoletano, G., Forte, R., Moro, D.D., Pietropaolo, E., Giovannelli, L., Berrilli, F.: 2018, J. Space Weather Space Clim. 8, A11. DOI.

    ADS  Article  Google Scholar 

  33. Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., et al.: 1995, Space Sci. Rev. 71, 55. DOI.

    ADS  Article  Google Scholar 

  34. Paouris, E., Mavromichalaki, H.: 2017a, Solar Phys. 292, 30. DOI.

    ADS  Article  Google Scholar 

  35. Paouris, E., Mavromichalaki, H.: 2017b, Solar Phys. 292, 180. DOI.

    ADS  Article  Google Scholar 

  36. Paouris, E., Vourlidas, A., Papaioannou, A., Anastasiadis, A.: 2020, Space Weather 18. DOI.

  37. Papaioannou, A., Sandberg, I., Anastasiadis, A., Kouloumvakos, A., Georgoulis, M.K., Tziotziou, K., Tsiropoula, G., Jiggens, P., Hilgers, A.: 2016, J. Space Weather Space Clim. 6, A42. DOI.

    ADS  Article  Google Scholar 

  38. Papaioannou, A., Anastasiadis, A., Sandberg, I., Jiggens, P.: 2018, J. Space Weather Space Clim. 8, A37. DOI.

    ADS  Article  Google Scholar 

  39. Papaioannou, A., Belov, A., Abunina, M., Eroshenko, E., Abunin, A., Anastasiadis, A., Patsourakos, S., Mavromichalaki, H.: 2020, Astrophys. J. 890, 101. DOI.

    ADS  Article  Google Scholar 

  40. Pomoell, J., Poedts, S.: 2018, J. Space Weather Space Clim. 8, A35. DOI.

    ADS  Article  Google Scholar 

  41. Riley, P., Mays, M.L., Andries, J., Amerstorfer, T., Biesecker, D., et al.: 2018, Space Weather 16, 1245. DOI.

    ADS  Article  Google Scholar 

  42. Rollett, T., Mostl, C., Isavnin, A., Davies, J.A., Kubicka, M., Amerstorfer, U.V., Harrison, R.A.: 2016, Astrophys. J. 824, 131. DOI.

    ADS  Article  Google Scholar 

  43. Schwenn, R., Dal Lago, A., Huttunen, E., Gonzalez, W.D.: 2005, Ann. Geophys. 23, 1033. DOI.

    ADS  Article  Google Scholar 

  44. Shi, T., Wang, Y., Wan, L., Cheng, X., Ding, M., Zhang, J.: 2015, Astrophys. J. 806, 271. DOI.

    ADS  Article  Google Scholar 

  45. Shiota, D., Kataoka, R.: 2016, Space Weather 14, 56. DOI.

    ADS  Article  Google Scholar 

  46. Stone, E., Frandsen, A., Mewaldt, R., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, Space Sci. Rev. 86, 1. DOI.

    ADS  Article  Google Scholar 

  47. Sudar, D., Vrsnak, B., Dumbovic, M.: 2016, Mon. Not. Roy. Astron. Soc. 456, 1542. DOI.

    ADS  Article  Google Scholar 

  48. Szabo, A.: 2015, In: Pelton, J., Allahdadi, F. (eds.) Handbook of Cosmic Hazards and Planetary Defense, Springer, Cham. DOI.

    Chapter  Google Scholar 

  49. Taktakishvili, A., Kuznetsova, M., MacNeice, P., Hesse, M., Rastätter, L., Pulkkinen, A., Chulaki, A., Odstrcil, D.: 2009 Space Weather 7, S03004. DOI

    ADS  Article  Google Scholar 

  50. Temmer, M., Preiss, S., Veronig, A.M.: 2009, Solar Phys. 256, 183. DOI.

    ADS  Article  Google Scholar 

  51. Verbeke, C., Mays, M.L., Temmer, M., Bingham, S., Steenburgh, R., Dumbovic, M., et al.: 2019, Space Weather 17. DOI.

  52. Vourlidas, A., Patsourakos, S., Savani, N.P.: 2019, Philos. Trans. - Royal Soc., Math. Phys. Eng. Sci. 377. DOI.

  53. Vourlidas, A., Balmaceda, L.A., Stenborg, G., Dal Lago, A.: 2017, Astrophys. J. 838, 141. DOI.

    ADS  Article  Google Scholar 

  54. Vrsnak, B., Sudar, D., Ruzdjak, D., Zic, T.: 2007, Astron. Astrophys. 469, 339. DOI.

    ADS  Article  Google Scholar 

  55. Vrsnak, B., Zic, T., Vrbanec, D., Temmer, M., Rollett, T., Mostl, C., et al.: 2013, Solar Phys. 285, 295. DOI.

    ADS  Article  Google Scholar 

  56. Vršnak, B., Temmer, M., Žic, T., Taktakishvili, A., Dumbović, M., Möst, C., Veronig, A.M., Mays, M.L., Odstrčil, D.: 2014, Astrophys. J. Suppl. 213, 21. DOI.

    ADS  Article  Google Scholar 

  57. Wold, A.M., Mays, M.L., Taktakishvili, A., Jian, L.K., Odstrcil, D., MacNeice, P.: 2018, J. Space Weather Space Clim. 8, A17. DOI.

    ADS  Article  Google Scholar 

  58. Wood, B.E., Wu, C.C., Lepping, R.P., Nieves-Chinchilla, T., Howard, R.A., Linton, M.G., Socker, D.G.: 2017, Astrophys. J. Suppl. 229, 29. DOI.

    ADS  Article  Google Scholar 

  59. Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., et al.: 2007, J. Geophys. Res. 112, A10102. DOI.

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the providers of the solar data used in this work. The coronal mass ejection data are taken from the SOHO/LASCO CME list (http://cdaw.gsfc.nasa.gov/CME_list/). This CME catalog is generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA.

E.P. supported by the project “PROTEAS II” (MIS 5002515), which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014 – 2020) and co-financed by Greece and the European Union (European Regional Development Fund). A.A. and G.B. partially supported by the same project “PROTEAS II”.

J.C. and M.D. acknowledge funding from the EU H2020 grant agreement No. 824135 (SOLARNET) and support by the Croatian Science Foundation under the project 7549 (MSOC).

A.V. is supported by NASA grants NNX17AC47G and 80NSSC19K0069.

A.P. and A.A. acknowledge the support through the ESA Contract No. 4000120480/NL/LF/hh “Solar Energetic Particle (SEP) Advanced Warning System (SAWS)” and the TRACER project (http://members.noa.gr/atpapaio/tracer/), funded by the National Observatory of Athens (NOA) (Project ID: 5063).

E.P., M.D. and M.L.M. acknowledge International Space Science Institute (ISSI) team “Understanding Our Capabilities in Observing and Modeling Coronal Mass Ejections”, led by C. Verbeke and M. Mierla.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Evangelos Paouris.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paouris, E., Čalogović, J., Dumbović, M. et al. Propagating Conditions and the Time of ICME Arrival: A Comparison of the Effective Acceleration Model with ENLIL and DBEM Models. Sol Phys 296, 12 (2021). https://doi.org/10.1007/s11207-020-01747-4

Download citation

Keywords

  • Coronal Mass Ejections
  • Interplanetary
  • Coronal Mass Ejections
  • Modeling
  • Coronal Mass Ejections
  • Forecasting
  • Coronal Mass Ejections
  • Initiation and propagation