Predicting the Amplitude of Solar Cycle 25 Using the Value 39 Months Before the Solar Minimum

Abstract

Yoshida and Yamagishi (Ann. Geophys. 28, 417, 2010) found that the rate of decrease in the smoothed monthly mean sunspot number [\(R_{\mathrm{I}}\)] over the final three years of a solar cycle or \(R_{\mathrm{I}}\) itself at three years before the solar minimum [\(R_{ \mathrm{min}}\)] can be used as a precursor for the ensuing maximum amplitude [\(R_{\mathrm{m}}\)] if the time of \(R_{\mathrm{min}}\) can be predicted in advance. The \(R_{\mathrm{I}}\) series of the new version is employed to carefully analyze the decrease rate [\(\beta \)] at different months [\(m\)] before \(R_{\mathrm{min}}\) and over different time intervals [\(\Delta m\)] in this study. It is found that \(R_{\mathrm{m}}(n)\) of Solar Cycle \(n\) is best correlated (\(r=0.831\)) with the preceding \(\beta (n-1, m, \Delta m)\) over the final \(\Delta m=m=39\) months. In addition, \(R_{\mathrm{m}}\) is found to be best correlated (\(r=0.834\)) with the \(R_{\mathrm{I}}\) value 39 months before the preceding minimum. For the even- (odd-)numbered cycles, \(R_{\mathrm{m}}\) is best correlated, \(r=0.956\) (0.747), with the rate of decrease over \(\Delta m= 38 (43)\) months interval from \(m=39(47)\) months before the solar minimum, and \(R_{\mathrm{m}}\) is best correlated, \(r=0.964(0.739)\), with the \(R_{\mathrm{I}}\)-value 39 (46) months before the solar minimum. Based on this method and the inferred end time of Solar Cycle 24, the amplitude of Solar Cycle 25 is predicted to be \(R_{\mathrm{m}}=130.0\pm 31.9\), occurring around October 2024 \(\pm 13\) (months).

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Babcock, H.W.: 1961, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572. DOI.

    ADS  Article  Google Scholar 

  2. Brown, G.M., Williams, W.R.: 1969, Some properties of the day-to-day variability of Sq(H). Planet. Space Sci. 17, 455. DOI.

    ADS  Article  Google Scholar 

  3. Cameron, R., Schüssler, M.: 2007, Solar cycle prediction using precursors and flux transport models. Astrophys. J. 659, 801. DOI.

    ADS  Article  Google Scholar 

  4. Cameron, R., Schüssler, M.: 2008, A robust correlation between growth rate and amplitude of solar cycles: Consequences for prediction methods. Astrophys. J. 685, 1291. DOI.

    ADS  Article  Google Scholar 

  5. Choudhuri, A.R., Chatterjee, P., Jiang, J.: 2007, Predicting Solar Cycle 24 with a solar dynamo model. Phys. Rev. Lett. 98, 131103. DOI.

    ADS  Article  Google Scholar 

  6. Clette, F., Cliver, E., Lefèvre, L., Svalgaard, L., Vaquero, J., Leibacher, J.: 2016, Preface to topical issue: Recalibration of the sunspot number. Solar Phys. 291, 2479. DOI.

    ADS  Article  Google Scholar 

  7. Dikpati, M., de Toma, G., Gilman, P.A.: 2006, Predicting the strength of Solar Cycle 24 using a flux-transport dynamo-based tool. Geophys. Res. Lett. 33, L05102. DOI.

    ADS  Article  Google Scholar 

  8. Du, Z.L.: 2011a, The relationship between prediction accuracy and correlation coefficient. Solar Phys. 270, 407. DOI.

    ADS  Article  Google Scholar 

  9. Du, Z.L.: 2011b, The shape of solar cycle described by a modified Gaussian function. Solar Phys. 273, 231. DOI.

    ADS  Article  Google Scholar 

  10. Du, Z.L.: 2020, Predicting the shape of Solar Cycle 25 using a similar-cycle method. Solar Phys. 295, 134. DOI.

    ADS  Article  Google Scholar 

  11. Du, Z.L., Wang, H.N.: 2010, Does a low solar cycle minimum hint at a weak upcoming cycle? Res. Astron. Astrophys. 10, 950. DOI.

    ADS  Article  Google Scholar 

  12. Du, Z.L., Wang, H.N.: 2011, The prediction method of similar cycles. Res. Astron. Astrophys. 11, 1482. DOI.

    ADS  Article  Google Scholar 

  13. Du, Z.L., Wang, H.N.: 2012, Predicting the solar maximum with the rising rate. Sci. China Ser. G, Phys. Mech. Astron. 55, 365. DOI.

    ADS  Article  Google Scholar 

  14. Du, Z.L., Li, R., Wang, H.N.: 2009, The predictive power of Ohl’s precursor method. Astron. J. 138, 1998. DOI.

    ADS  Article  Google Scholar 

  15. Du, Z.L., Wang, H.N., Zhang, L.Y.: 2008, A running average method for predicting the size and length of a solar cycle. Chin. J. Astron. Astrophys. 8, 477. DOI.

    ADS  Article  Google Scholar 

  16. Gnevyshev, M.N., Ohl, A.I.: 1948, On the 22-year cycle of solar activity. Astron. Zh. 25, 18.

    Google Scholar 

  17. Hale, G.E.: 1924, Sun-spots as magnets and the periodic reversal of their polarity. Nature 113, 105. DOI.

    ADS  Article  Google Scholar 

  18. Han, Y.B., Yin, Z.Q.: 2019, A decline phase modeling for the prediction of Solar Cycle 25. Solar Phys. 294, 107. DOI.

    ADS  Article  Google Scholar 

  19. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1994, The shape of the sunspot cycle. Solar Phys. 151, 177. DOI.

    ADS  Article  Google Scholar 

  20. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 2002, Group sunspot numbers: Sunspot cycle characteristics. Solar Phys. 211, 357. DOI.

    ADS  Article  Google Scholar 

  21. Kane, R.P.: 2007, A preliminary estimate of the size of the coming Solar Cycle 24, based on Ohl’s precursor method. Solar Phys. 243, 205. DOI.

    ADS  Article  Google Scholar 

  22. Leighton, R.B.: 1969, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1. DOI.

    ADS  Article  Google Scholar 

  23. Moradi, H., Baldner, C., Birch, A.C., Braun, D.C., Cameron, R.H., Duvall, T.L., Gizon, L., Haber, D., Hanasoge, S.M., Hindman, B.W., Jackiewicz, J., Khomenko, E., Komm, R., Rajaguru, P., Rempel, M., Roth, M., Schlichenmaier, R., Schunker, H., Spruit, H.C., Strassmeier, K.G., Thompson, M.J., Zharkov, S.: 2010, Modeling the subsurface structure of sunspots. Solar Phys. 267, 1. DOI.

    ADS  Article  Google Scholar 

  24. Nordemann, D.J.R., Trivedi, N.B.: 1992, Sunspot number time series - exponential fitting and periodicites. Solar Phys. 142, 411. DOI.

    ADS  Article  Google Scholar 

  25. Ohl, A.I., Ohl, G.I.: 1979, A new method of very long-term prediction of solar activity. In: Donnelly, R.F. (ed.) NASA Marshall Space Flight Center Solar-Terr. Pred. Proc. 2, 258. ADS.

    Google Scholar 

  26. Pesnell, W.D., Schatten, K.H.: 2018, An early prediction of the amplitude of Solar Cycle 25. Solar Phys. 293, 112. DOI.

    ADS  Article  Google Scholar 

  27. Schatten, K.H.: 2005, Fair space weather for Solar Cycle 24. Geophys. Res. Lett. 32, L21106. DOI.

    ADS  Article  Google Scholar 

  28. Schatten, K., Myers, D.J., Sofia, S.: 1996, Solar activity forecast for Solar Cycle 23. Geophys. Res. Lett. 23, 605. DOI.

    ADS  Article  Google Scholar 

  29. Schatten, K.H., Scherrer, P.H., Svalgaard, L., Wilcox, J.M.: 1978, Using dynamo theory to predict the sunspot number during Solar Cycle 21. Geophys. Res. Lett. 5, 411. DOI.

    ADS  Article  Google Scholar 

  30. Schwabe, H.: 1843, Die Sonne. Astron. Nachr. 20, 283. DOI.

    ADS  Article  Google Scholar 

  31. Singh, P.R., Tiwari, C.M., Saxena, A.K., Agrawal, S.L.: 2019, Quasi-biennial periodicities and heliospheric modulation of geomagnetic activity during solar cycles 22. Phys. Scr. 94, 105005. DOI.

    ADS  Article  Google Scholar 

  32. Stewart, J.Q., Panofsky, H.A.A.: 1938, The mathematical characteristics of sunspot variations. Astrophys. J. 88, 385. DOI.

    ADS  Article  MATH  Google Scholar 

  33. Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Sunspot cycle 24: Smallest cycle in 100 years? Geophys. Res. Lett. 32, L01104. DOI.

    ADS  Article  Google Scholar 

  34. Temmer, M., Veronig, A., Hanslmeier, A.: 2003, Does solar flare activity lag behind sunspot activity? Solar Phys. 215, 111. DOI.

    ADS  Article  Google Scholar 

  35. Thompson, R.J.: 1988, The rise of solar cycle number 22. Solar Phys. 117, 279. DOI.

    ADS  Article  Google Scholar 

  36. Thompson, R.J.: 1993, A technique for predicting the amplitude of the solar cycle. Solar Phys. 148, 383. DOI.

    ADS  Article  Google Scholar 

  37. Upton, L.A., Hathaway, D.H.: 2018, An updated Solar Cycle 25 prediction with AFT: The modern minimum. Geophys. Res. Lett. 45, 8091. DOI.

    ADS  Article  Google Scholar 

  38. Vondrak, J.: 1977, Problem of smoothing observational data II. Bull. Astron. Inst. Czechoslov. 28, 84. ADS.

    ADS  Google Scholar 

  39. Waldmeier, M.: 1939, Über die Struktur der Sonnenflecken. Astron. Mitt. Zür. 14, 439. ADS.

    ADS  Google Scholar 

  40. Wilson, R.M.: 1990, On the maximum rate of change in sunspot number growth and the size of the sunspot cycle. Solar Phys. 127, 199. DOI.

    ADS  Article  Google Scholar 

  41. Xu, T., Wu, J., Wu, Z.-S., Li, Q.: 2008, Long-term sunspot number prediction based on EMD analysis and AR model. Chin. J. Astron. Astrophys. 8, 337. DOI.

    ADS  Article  Google Scholar 

  42. Yin, Z.Q., Han, Y.B.: 2018, An improved prediction of sunspot maximum by Vondrak smoothing method. Astron. Nachr. 339, 30. DOI.

    ADS  Article  Google Scholar 

  43. Yoshida, A.: 2014, Difference between even- and odd-numbered cycles in the predictability of solar activity and prediction of the amplitude of cycle 25. Ann. Geophys. 32, 1035. DOI.

    ADS  Article  Google Scholar 

  44. Yoshida, A., Sayre, R.: 2012, Tendency of discreteness of the solar amplitude and intercycle relatedness. Adv. Astron. 2012, 519852. DOI.

    ADS  Article  Google Scholar 

  45. Yoshida, A., Yamagishi, H.: 2010, Predicting amplitude of Solar Cycle 24 based on a new precursor method. Ann. Geophys. 28, 417. DOI.

    ADS  Article  Google Scholar 

  46. Yule, G.U.: 1927, On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot numbers. Phil. Trans. Roy. Soc. London 226, 267. DOI.

    ADS  Article  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous reviewer for valuable suggestions to improve this manuscript. This work is supported by the National Science Foundation of China (NSFC) through grants 11603040 and 11973058.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhanle Du.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, Z. Predicting the Amplitude of Solar Cycle 25 Using the Value 39 Months Before the Solar Minimum. Sol Phys 295, 147 (2020). https://doi.org/10.1007/s11207-020-01720-1

Download citation

Keywords

  • Solar activity, sunspots, solar cycle
  • Prediction