Skip to main content
Log in

Temporal and Periodic Variation of the MCMESI for the Last Two Solar Cycles; Comparison with the Number of Different Class X-ray Solar Flares

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In this study we compared the temporal and periodic variations of the Maximum CME Speed Index (MCMESI) and the the number of different class (C, M, and X) solar X-ray flares for the last two solar cycles (Solar Cycles 23 and 24). To obtain the correlation between the MCMESI and solar flare numbers the cross-correlation analysis was applied to monthly data sets. Also to investigate the periodic behavior of all data sets the Multi Taper Method (MTM) and the Morlet wavelet analysis method were performed with daily data from 2009 to 2018. To evaluate our wavelet analysis Cross Wavelet Transform (XWT) and Wavelet Transform Coherence (WTC) methods were performed. Causal relationship between data sets were further examined by Convergence Cross Mapping (CCM) method. As results of our analysis we found the following: i) The C class X-ray flare numbers increased about 16% during the Solar Cycle 24 compared to Cycle 23, while all other data sets decreased; the MCMESI decreased about 16% and the number of M and X class flares decreased about 32%. ii) All the X-ray solar flare classes show remarkable positive correlation with the MCMESI. While the correlation between the MCMESI and C class flares comes from the general solar cycle trend, it mainly results from the fluctuations in the data in case of the X class flares. iii) In general, all class flare numbers and the MCMESI show similar periodic behavior. iv) The 546-day periodicity detected in the MCMESI may not be of solar origin or at least the solar flares are not the source of this periodicity. v) C and M class solar flares have a stronger causative effect on the MCMESI compared to X class solar flares. However, the only bidirectional causal relationship is obtained between the MCMESI and C class flare numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Notes

  1. https://cdaw.gsfc.nasa.gov/CME_list/.

  2. https://www.swpc.noaa.gov/.

References

  • Andrews, M.D., Hovard, R.A..: 2001, A two-type classification of Lasco Coronal Mass Ejection. Space Sci. Rev. 95, 147. DOI.

    Article  ADS  Google Scholar 

  • Ballester, J.L., Oliver, R., Carbonell, M.: 2002, The near 160 day periodicity in the photospheric magnetic flux. Astrophys. J. 566, 505. DOI.

    Article  ADS  Google Scholar 

  • Barlyaeva, T., Wojak, J., Lamy, P., Boclet, B., Toth, I.: 2018, Periodic behaviour of coronal mass ejections, eruptive events, and solar activity proxies during solar cycles 23 and 24. J. Atmos. Solar-Terr. Phys. 177, 12. DOI.

    Article  ADS  Google Scholar 

  • Byrne, J.P., Morgan, H., Habbal, S.R., Gallagher, P.T.: 2012, Automatic detection and tracking of Coronal Mass Ejections. II. Multiscale filtering of coronagraph images. Astrophys. J. 752(2), 145. DOI.

    Article  ADS  Google Scholar 

  • Chang, C., Glover, G.H.: 2010, Time–frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage 50(1), 81. DOI.

    Article  Google Scholar 

  • Chen, P.F.: 2011, Coronal Mass Ejections: models and their observational basis. Living Rev. Solar Phys. 8(1), 1. DOI.

    Article  ADS  Google Scholar 

  • Chowdhury, P., Kilcik, A., Yurchyshyn, V., Obridko, V.N., Rozelot, J.P.: 2019, Analysis of the hemispheric sunspot number time series for the Solar Cycles 18 to 24. Solar Phys. 294(10), 142. DOI.

    Article  ADS  Google Scholar 

  • Cliver, E.W., Ling, A.G., Wise, J.E., Lanzerotti, L..J.: 1999, A prediction of geomagnetic activity for Solar Cycle 23. J. Geophys. Res. 104(A4), 6871. DOI.

    Article  ADS  Google Scholar 

  • Cremades, H., Bothmer, V.: 2004, On the three-dimensional configuration of coronal mass ejections. Astron. Astrophys. 422, 307. DOI.

    Article  ADS  Google Scholar 

  • Emslie, A.G., Kucharek, H., Dennis, B.R., Gopalswamy, N., Holman, G.D., Share, G.H., Vourlidas, A., Forbes, T.G., Gallagher, P.T., Mason, G.M., Metcalf, T.R., Mewaldt, R.A., Murphy, R.J., Schwartz, R.A., Zurbuchen, T.H.: 2004, Energy partition in two solar flare/CME events. J. Geophys. Res. 109(A10), 10104. DOI.

    Article  Google Scholar 

  • Escudier, R., Mignot, J., Swingedouw, D.: 2013, A 20-year coupled ocean-sea ice-atmosphere variability mode in the North Atlantic in an AOGCM. Clim. Dyn. 40(3–4), 619. DOI.

    Article  Google Scholar 

  • Fang, K., Gou, X., Chen, F., Liu, C., Davi, N., Li, J., Zhao, Z., Li, Y.: 2012, Tree-ring based reconstruction of drought variability (1615-2009) in the Kongtong Mountain area, northern China. Glob. Planet. Change 80, 190. DOI.

    Article  ADS  Google Scholar 

  • Ghil, M., Allen, M.R., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M.E., Robertson, A.W., Saunders, A., Tian, Y., Varadi, F., Yiou, P.: 2002, Advanced spectral methods for climatic time series. Rev. Geophys. 40(1), 1003. DOI.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009, The SOHO/LASCO CME catalog. Earth Moon Planets 104(1–4), 295. DOI.

    Article  ADS  Google Scholar 

  • Gosling, J.T., Bame, S..J., McComas, D..J., Phillips, J.L.: 1990, Coronal mass ejections and large geomagnetic storms. Geophys. Res. Lett. 17(7), 901. DOI.

    Article  ADS  Google Scholar 

  • Grinsted, A., Moore, J.C., Jevrejeva, S.: 2004, Application of cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561. DOI.

    Article  ADS  Google Scholar 

  • Gurgenashvili, E., Zaqarashvili, T.V., Kukhianidze, V., Oliver, R., Ballester, J.L., Ramishvili, G., Shergelashvili, B., Hanslmeier, A., Poedts, S.: 2016, Rieger-type periodicity during Solar Cycles 14-24: estimation of dynamo magnetic field strength in the solar interior. Astrophys. J. 826(1), 55. DOI.

    Article  ADS  Google Scholar 

  • Hudson, H.S., Cliver, E.W.: 2001, Observing coronal mass ejections without coronagraphs. J. Geophys. Res. 106(A11), 25199. DOI.

    Article  ADS  Google Scholar 

  • Inceoglu, F., Simoniello, R., Arlt, R., Rempel, M.: 2019, Constraining non-linear dynamo models using quasi-biennial oscillations from sunspot area data. Astron. Astrophys. 625, A117. DOI.

    Article  ADS  Google Scholar 

  • Kilcik, A., Ozguc, A., Rozelot, J.P.: 2010, Latitude dependency of solar flare index–temperature relation occuring over middle and high latitudes of Atlantic–Eurasian region. J. Atmos. Solar-Terr. Phys. 72(18), 1379. DOI.

    Article  ADS  Google Scholar 

  • Kilcik, A., Anderson, C..N.K., Rozelot, J.P., Ye, H., Sugihara, G., Ozguc, A.: 2009, Nonlinear prediction of Solar Cycle 24. Astrophys. J. 693(2), 1173. DOI.

    Article  ADS  Google Scholar 

  • Kilcik, A., Yurchyshyn, V.B., Abramenko, V., Goode, P.R., Gopalswamy, N., Ozguc, A., Rozelot, J.P.: 2011, Maximum coronal mass ejection speed as an indicator of solar and geomagnetic activities. Astrophys. J. 727(1), 44. DOI.

    Article  ADS  Google Scholar 

  • Kilcik, A., Yurchyshyn, V., Sahin, S., Sarp, V., Obridko, V., Ozguc, A., Rozelot, J.P.: 2018, The evolution of flaring and non-flaring active regions. Mon. Not. Roy. Astron. Soc. 477(1), 293. DOI.

    Article  ADS  Google Scholar 

  • Kundu, M.R., White, S.M., Garaimov, V.I., Manoharan, P.K., Subramanian, P., Ananthakrishnan, S., Janardhan, P.: 2004, Radio observations of rapid acceleration in a slow filament eruption/fast coronal mass ejection event. Astrophys. J. 607(1), 530. DOI.

    Article  ADS  Google Scholar 

  • Lamy, P.L., Floyd, O., Boclet, B., Wojak, J., Gilardy, H., Barlyaeva, T.: 2019, Coronal mass ejections over Solar Cycles 23 and 24. Space Sci. Rev. 215(5), 39. DOI.

    Article  ADS  Google Scholar 

  • Lau, K.M., Weng, H.: 1995, Climate signal detection using wavelet transform: how to make a time series sing. Bull. Am. Meteorol. Soc. 76(12), 2391. DOI.

    Article  ADS  Google Scholar 

  • Lou, Y.Q., Wang, Y.M. Fan, Z., Wang, S., Wang, J.X.: 2003, Periodicities in solar coronal mass ejections. Mon. Not. Roy. Astron. Soc. 345(3), 809. DOI.

    Article  ADS  Google Scholar 

  • MacQueen, R.M., Fisher, R.R.: 1983, The kinematics of solar inner coronal transients. Solar Phys. 89(1), 89. DOI.

    Article  ADS  Google Scholar 

  • Maraun, D., Kurths, J.: 2004, Cross wavelet analysis: significance testing and pitfalls. Nonlinear Process. Geophys. 11(4), 505. DOI.

    Article  ADS  Google Scholar 

  • Marullo, S., Artale, V., Santoleri, R.: 2011, The SST multidecadal variability in the Atlantic–Mediterranean region and its relation to AMO. J. Climate 24(16), 4385. DOI.

    Article  ADS  Google Scholar 

  • Oliver, R., Carbonell, M., Ballester, J.L.: 1992, Intermediate-term periodicities in solar activity. Solar Phys. 137, 141. DOI.

    Article  ADS  Google Scholar 

  • Oloketuyi, J., Liu, Y., Zhao, M.: 2019, The periodic and temporal behaviors of solar X-ray flares in Solar Cycles 23 and 24. Astrophys. J. 874(1), 20. DOI.

    Article  ADS  Google Scholar 

  • Papaioannou, A., Sandberg, I., Anastasiadis, A., Kouloumvakos, A., Georgoulis, M.K., Tziotziou, K., Tsiropoula, G., Jiggens, P., Hilgers, A.: 2016, Solar flares, coronal mass ejections and solar energetic particle event characteristics. J. Space Weather Space Clim. 6, A42. DOI.

    Article  ADS  Google Scholar 

  • Pomoell, J., Poedts, S.: 2018, EUHFORIA: European heliospheric forecasting information asset. J. Space Weather Space Clim. 8, A35. DOI.

    Article  ADS  Google Scholar 

  • Sarp, V., Kilcik, A., Yurchyshyn, V., Rozelot, J.P., Ozguc, A.: 2018, Prediction of Solar Cycle 25: a non-linear approach. Mon. Not. Roy. Astron. Soc. 481(3), 2981. DOI.

    Article  ADS  Google Scholar 

  • Slemzin, V.A., Goryaev, F.F., Rodkin, D.G., Shugay, Y.S., Kuzin, S.V.: 2019, Formation of coronal mass ejections in the solar corona and propagation of the resulting plasma streams in the heliosphere. Plasma Phys. Rep. 45(10), 889. DOI.

    Article  ADS  Google Scholar 

  • Sugihara, G., May, R.M.: 1990, Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344(6268), 734. DOI.

    Article  ADS  Google Scholar 

  • Sugihara, G., May, R., Ye, H., Hsieh, C.-h., Deyle, E., Fogarty, M., Munch, S.: 2012, Detecting causality in complex ecosystems. Science 338(6106), 496. DOI.

    Article  MATH  ADS  Google Scholar 

  • Takens, F.: 1981, Detecting strange attractors in turbulence. In: Lecture Notes in Mathematics 898, 366. DOI.

    Chapter  Google Scholar 

  • Thomson, D.J.: 1982, Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055.

    Article  ADS  Google Scholar 

  • Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61.

    Article  ADS  Google Scholar 

  • Webb, D.F., Howard, T.A.: 2012, Coronal mass ejections: observations. Living Rev. Solar Phys. 9(1), 3. DOI.

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, A07105. DOI.

    Article  ADS  Google Scholar 

  • Zaqarashvili, T.V., Gurgenashvili, E.: 2018, Magneto-Rossby waves and seismology of solar interior. Front. Astron. Space Sci. 5, 7. DOI.

    Article  ADS  Google Scholar 

  • Zaqarashvili, T.V., Carbonell, M., Oliver, R., Ballester, J.L.: 2010, Quasi-biennial oscillations in the solar tachocline caused by magnetic Rossby wave instabilities. Astrophys. J. Lett. 724(1), L85. DOI.

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K.P., Howard, R.A., Kundu, M.R., White, S.M.: 2001, On the temporal relationship between coronal mass ejections and flares. Astrophys. J. 559(1), 452. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for his/her valuable comments and suggestions, which improved the manuscript. The CME catalog is generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) by the Project of 115F031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Kilcik.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilcik, A., Chowdhury, P., Sarp, V. et al. Temporal and Periodic Variation of the MCMESI for the Last Two Solar Cycles; Comparison with the Number of Different Class X-ray Solar Flares. Sol Phys 295, 159 (2020). https://doi.org/10.1007/s11207-020-01711-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01711-2

Keywords

Navigation