Skip to main content

Analysis of the Helical Kink Stability of Differently Twisted Magnetic Flux Ropes

Abstract

Magnetic flux ropes (MFRs) are usually considered to be the magnetic structure that dominates the transport of helicity from the Sun into the heliosphere. They entrain a confined plasma within a helically organized magnetic structure and are able to cause geomagnetic activity. The formation, evolution, and twist distribution of MFRs are issues subject to strong debate. Although different twist profiles have been suggested so far, none of them has been thoroughly explored yet. The aim of this work is to present a theoretical study of the conditions under which MFRs with different twist profiles are kink stable and thereby shed some light on the aforementioned aspects. The magnetic field is modeled according to the circular–cylindrical analytical flux rope model in Nieves-Chinchilla et al. (Astrophys. J. 823, 27, 2016) as well as the Lundquist and Gold–Hoyle models, and the kink stability is analyzed with a numerical method that has been developed based on Linton, Longcope, and Fisher (Astrophys. J. 469, 954, 1996). The results are discussed in relation to MFR rotations, magnetic forces, the reversed chirality scenario, and the expansion throughout the heliosphere, among others, providing a theoretical background to improve the current understanding of the internal magnetic configuration of coronal mass ejections (CMEs). The data obtained by new missions like Parker Solar Probe or Solar Orbiter will give the opportunity to explore these results and ideas by observing MFRs closer than ever to the Sun.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  • Amari, T., Luciani, J.F., Aly, J.J., Mikic, Z., Linker, J.: 2003, Coronal mass ejection: initiation, magnetic helicity, and flux ropes. I. Boundary motion-driven evolution. Astrophys. J. 585(2), 1073. DOI. ADS.

    ADS  Article  Google Scholar 

  • Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510(1), 485. DOI. ADS.

    ADS  Article  Google Scholar 

  • Archontis, V., Török, T.: 2008, Eruption of magnetic flux ropes during flux emergence. Astron. Astrophys. 492(2), L35. DOI. ADS.

    ADS  Article  Google Scholar 

  • Aulanier, G., Janvier, M., Schmieder, B.: 2012, The standard flare model in three dimensions—I. Strong-to-weak shear transition in post-flare loops. Astron. Astrophys. 543, A110. DOI. ADS.

    ADS  Article  Google Scholar 

  • Balmaceda, L.A., Vourlidas, A., Stenborg, G., St. Cyr, O.C.: 2020, On the expansion speed of coronal mass ejections. Implications for self-similar evolution. Solar Phys. 295, 107. DOI. ADS.

    ADS  Article  Google Scholar 

  • Bateman, G.: 1978, MHD Instabilities, MIT Press, Cambridge. ADS.

    Google Scholar 

  • Bennett, K., Roberts, B., Narain, U.: 1999, Waves in twisted magnetic flux tubes. Solar Phys. 185(1), 41. DOI. ADS.

    ADS  Article  Google Scholar 

  • Berdichevsky, D.B.: 2013, On fields and mass constraints for the uniform propagation of magnetic-flux ropes undergoing isotropic expansion. Solar Phys. 284(1), 245. DOI. ADS.

    ADS  Article  Google Scholar 

  • Berdichevsky, D.B., Lepping, R.P., Farrugia, C.J.: 2003, Geometric considerations of the evolution of magnetic flux ropes. Phys. Rev. E 67, 036405. DOI. ADS.

    ADS  Article  Google Scholar 

  • Bernstein, I.B., Frieman, E.A., Kruskal, M.D., Kulsrud, R.M., Chandrasekhar, S.: 1958, An energy principle for hydromagnetic stability problems. Proc. Roy. Soc. London Ser. A, Math. Phys. Sci. 244(1236), 17. DOI. ADS.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  • Brent, R.P.: 2013, Algorithms for Minimization Without Derivatives, Courier Corporation, Englewood Cliffs.

    MATH  Google Scholar 

  • Burlaga, L.F.: 1988, Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res. 93(A7), 7217. DOI. ADS.

    ADS  Article  Google Scholar 

  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86(A8), 6673. DOI. ADS.

    ADS  Article  Google Scholar 

  • Cabello, I., Cremades, H., Balmaceda, L., Dohmen, I.: 2016, First simultaneous views of the axial and lateral perspectives of a coronal mass ejection. Solar Phys. 291(6), 1799. DOI. ADS.

    ADS  Article  Google Scholar 

  • Chiappinelli, R.: 2019, Nonlinear Rayleigh quotients and nonlinear spectral theory. Symmetry 11(7), 928. DOI.

    Article  Google Scholar 

  • Cho, K.-S., Park, S.-H., Marubashi, K., Gopalswamy, N., Akiyama, S., Yashiro, S., Kim, R.-S., Lim, E.-K.: 2013, Comparison of helicity signs in interplanetary CMEs and their solar source regions. Solar Phys. 284(1), 105. DOI. ADS.

    ADS  Article  Google Scholar 

  • Cremades, H., Iglesias, F.A., Merenda, L.A.: 2020, Asymmetric expansion of coronal mass ejections in the low corona. Astron. Astrophys. 635, A100. DOI. ADS.

    ADS  Article  Google Scholar 

  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L.: 2006, A new model-independent method to compute magnetic helicity in magnetic clouds. Astron. Astrophys. 455(1), 349. DOI. ADS.

    ADS  Article  MATH  Google Scholar 

  • Démoulin, P., Dasso, S., Janvier, M., Lanabere, V.: 2019, Re-analysis of Lepping’s fitting method for magnetic clouds: Lundquist fit reloaded. Solar Phys. 294(12), 172. DOI. ADS.

    ADS  Article  Google Scholar 

  • Dungey, J., Loughhead, R.: 1954, Twisted magnetic fields in conducting fluids. Aust. J. Phys. 7(1), 5. DOI. ADS.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  • Einaudi, G.: 1990, Ideal instabilities in a magnetic flux tube. In: Physics of Magnetic Flux Ropes. Geoph. Monog. Series 58. ADS.

    Chapter  Google Scholar 

  • Fan, Y., Gibson, S.E.: 2004, Numerical simulations of three-dimensional coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes. Astrophys. J. 609(2), 1123. DOI. ADS.

    ADS  Article  Google Scholar 

  • Farrugia, C.J., Janoo, L.A., Torbert, R.B., Quinn, J.M., Ogilvie, K.W., Lepping, R.P., Fitzenreiter, R.J., Steinberg, J.T., Lazarus, A.J., Lin, R.P., Larson, D., Dasso, S., Gratton, F.T., Lin, Y., Berdichevsky, D.: 1999, A uniform-twist magnetic flux rope in the solar wind. AIP Conf. Proc. 471(1), 745. DOI. ADS.

    ADS  Article  Google Scholar 

  • Gold, T., Hoyle, F.: 1960, On the origin of solar flares. Mon. Not. Roy. Astron. Soc. 120(2), 89. DOI. ADS.

    ADS  Article  Google Scholar 

  • Goldstein, H.: 1983, On the field configuration in magnetic clouds. NASA Conf. Publ. 228, 731. ADS.

    Google Scholar 

  • Gosling, J.T.: 1990, Coronal mass ejections and magnetic flux ropes in interplanetary space. In: Physics of Magnetic Flux Ropes. Geoph. Monog. Series 58. DOI. ADS.

    Chapter  Google Scholar 

  • Hau, L.N., Sonnerup, B.U.O.: 1999, Two-dimensional coherent structures in the magnetopause: recovery of static equilibria from single-spacecraft data. J. Geophys. Res. 104(A4), 6899. DOI. ADS.

    ADS  Article  Google Scholar 

  • Hidalgo, M.A., Nieves-Chinchilla, T., Cid, C.: 2002, Elliptical cross-section model for the magnetic topology of magnetic clouds. Geophys. Res. Lett. 29(13), 1637. DOI. ADS.

    ADS  Article  Google Scholar 

  • Hidalgo, M.A., Cid, C., Vinas, A.F., Sequeiros, J.: 2002, A non-force-free approach to the topology of magnetic clouds in the solar wind. J. Geophys. Res. 107(A1), 1002. DOI. ADS.

    Article  Google Scholar 

  • Hood, A.W., Priest, E.R.: 1979, Kink instability of solar coronal loops as the cause of solar flares. Solar Phys. 64(2), 303. DOI. ADS.

    ADS  Article  Google Scholar 

  • Hood, A.W., Priest, E.R.: 1981, Critical conditions for magnetic instabilities in force-free coronal loops. Geophys. Astrophys. Fluid Dyn. 17(1), 297. DOI. ADS.

    ADS  Article  MATH  Google Scholar 

  • Hu, Q.: 2017, The Grad–Shafranov reconstruction in twenty years: 1996–2016. Adv. Sci. China. Earth Sci. 60, 1466. DOI. ADS.

    ADS  Article  Google Scholar 

  • Hu, Q., Qiu, J., Krucker, S.: 2015, Magnetic field line lengths inside interplanetary magnetic flux ropes. J. Geophys. Res. 120(7), 5266. DOI. ADS.

    Article  Google Scholar 

  • Hu, Q., Qiu, J., Dasgupta, B., Khare, A., Webb, G.M.: 2014, Structures of interplanetary magnetic flux ropes and comparison with their solar sources. Astrophys. J. 793(1), 53. DOI. ADS.

    ADS  Article  Google Scholar 

  • Kahler, S.W., Krucker, S., Szabo, A.: 2011, Solar energetic electron probes of magnetic cloud field line lengths. J. Geophys. Res. 116(A1), A01104. DOI. ADS.

    ADS  Article  Google Scholar 

  • Kay, C., Opher, M., Evans, R.M.: 2015, Global trends of CME deflections based on CME and solar parameters. Astrophys. J. 805(2), 168. DOI. ADS.

    ADS  Article  Google Scholar 

  • Kazachenko, M.D., Canfield, R.C., Longcope, D.W., Qiu, J.: 2010, Sunspot rotation, flare energetics, and flux rope helicity: the Halloween Flare on 2003 October 28. Astrophys. J. 722(2), 1539. DOI. ADS.

    ADS  Article  Google Scholar 

  • Knizhnik, K.J., Linton, M.G., DeVore, C.R.: 2018, The role of twist in kinked flux rope emergence and delta-spot formation. Astrophys. J. 864(1), 89. DOI. ADS.

    ADS  Article  Google Scholar 

  • Kopp, R.A., Pneuman, G.W.: 1976, Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys. 50(1), 85. DOI. ADS.

    ADS  Article  Google Scholar 

  • Kruskal, M.D., Johnson, J.L., Gottlieb, M.B., Goldman, L.M.: 1958, Hydromagnetic instability in a stellarator. Phys. Fluids 1, 421. DOI. ADS.

    ADS  MathSciNet  Article  Google Scholar 

  • Kutchko, F.J., Briggs, P.R., Armstrong, T.P.: 1982, The bidirectional particle event of October 12, 1977, possibly associated with a magnetic loop. J. Geophys. Res. 87(A3), 1419. DOI. ADS.

    ADS  Article  Google Scholar 

  • Lanabere, V., Dasso, S., Démoulin, P., Janvier, M., Rodriguez, L., Masías-Meza, J.J.: 2020, Magnetic twist profile inside magnetic clouds derived with a superposed epoch analysis. Astron. Astrophys. 635, A85. DOI. ADS.

    ADS  Article  Google Scholar 

  • Larson, D.E., Lin, R.P., McTiernan, J.M., McFadden, J.P., Ergun, R.E., McCarthy, M., Rème, H., Sanderson, T.R., Kaiser, M., Lepping, R.P., Mazur, J.: 1997, Tracing the topology of the October 18–20, 1995, magnetic cloud with \(\sim 0.1\)\(10^{2}\) keV electrons. Geophys. Res. Lett. 24(15), 1911. DOI. ADS.

    ADS  Article  Google Scholar 

  • Lepping, R.P., Jones, J.A., Burlaga, L.F.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95(A8), 11957. DOI. ADS.

    ADS  Article  Google Scholar 

  • Lepping, R.P., Wu, C.-C.: 2010, Selection effects in identifying magnetic clouds and the importance of the closest approach parameter. Ann. Geophys. 28(8), 1539. DOI. ADS.

    ADS  Article  Google Scholar 

  • Lepping, R.P., Berdichevsky, D.B., Wu, C.-C., Szabo, A., Narock, T., Mariani, F., Lazarus, A.J., Quivers, A.J.: 2006, A summary of WIND magnetic clouds for years 1995–2003: model-fitted parameters, associated errors and classifications. Ann. Geophys. 24(1), 215. DOI. ADS.

    ADS  Article  Google Scholar 

  • Lepping, R.P., Wu, C.-C., Berdichevsky, D.B., Szabo, A.: 2018, Wind magnetic clouds for the period 2013–2015: model fitting, types, associated shock waves, and comparisons to other periods. Solar Phys. 293(4), 65. DOI. ADS.

    ADS  Article  Google Scholar 

  • Lifschitz, A.E.: 1989, Magnetohydrodynamics and Spectral Theory, Developments in Electromagnetic Theory and Applications 4, Kluwer Academic Publishers, Boston. DOI.

    Book  MATH  Google Scholar 

  • Linton, M.G., Longcope, D.W., Fisher, G.H.: 1996, The helical kink instability of isolated, twisted magnetic flux tubes. Astrophys. J. 469, 954. DOI. ADS.

    ADS  Article  Google Scholar 

  • Linton, M.G., Dahlburg, R.B., Fisher, G.H., Longcope, D.W.: 1998, Nonlinear evolution of kink-unstable magnetic flux tubes and solar \(\delta \)-spot active regions. Astrophys. J. 507(1), 404. DOI. ADS.

    ADS  Article  Google Scholar 

  • Linton, M.G., Fisher, G.H., Dahlburg, R.B., Fan, Y.: 1999, Relationship of the multimode kink instability to \(\delta \)-spot formation. Astrophys. J. 522(2), 1190. DOI. ADS.

    ADS  Article  Google Scholar 

  • Longcope, D.W., Beveridge, C.: 2007, A quantitative, topological model of reconnection and flux rope formation in a two-ribbon flare. Astrophys. J. 669(1), 621. DOI. ADS.

    ADS  Article  Google Scholar 

  • Longcope, D.W., Fisher, G.H., Arendt, S.: 1996, The evolution and fragmentation of rising magnetic flux tubes. Astrophys. J. 464, 999. DOI. ADS.

    ADS  Article  Google Scholar 

  • Lundquist, S.: 1951, On the stability of magneto-hydrostatic fields. Phys. Rev. 83(2), 307. DOI. ADS.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  • Lynch, B.J., Antiochos, S.K., MacNeice, P.J., Zurbuchen, T.H., Fisk, L.A.: 2004, Observable properties of the breakout model for coronal mass ejections. Astrophys. J. 617(1), 589. DOI. ADS.

    ADS  Article  Google Scholar 

  • Mikic, Z., Schnack, D.D., van Hoven, G.: 1990, Dynamical evolution of twisted magnetic flux tubes. I. Equilibrium and linear stability. Astrophys. J. 361, 690. DOI. ADS.

    ADS  Article  Google Scholar 

  • Moore, R.L., Labonte, B.J.: 1980, The filament eruption in the 3B flare of July 29, 1973—onset and magnetic field configuration. In: Solar and Interplanetary Dynamics, IAU Symp. 91, 207. ADS.

    Chapter  Google Scholar 

  • Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: 2001, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552(2), 833. DOI. ADS.

    ADS  Article  Google Scholar 

  • Mulligan, T., Russell, C.T.: 2001, Multispacecraft modeling of the flux rope structure of interplanetary coronal mass ejections: cylindrically symmetric versus nonsymmetric topologies. J. Geophys. Res. 106(A6), 10581. DOI. ADS.

    ADS  Article  Google Scholar 

  • Myers, C.E., Yamada, M., Ji, H., Yoo, J., Fox, W., Jara-Almonte, J., Savcheva, A., Deluca, E.E.: 2015, A dynamic magnetic tension force as the cause of failed solar eruptions. Nature 528(7583), 526. DOI. ADS.

    ADS  Article  Google Scholar 

  • Nieves-Chinchilla, T.: 2018, Modeling heliospheric flux ropes: A comparative study of physical quantities. IEEE Trans. Plasma Sci. 46(7), 2370. DOI. ADS.

    ADS  Article  Google Scholar 

  • Nieves-Chinchilla, T., Colaninno, R., Vourlidas, A., Szabo, A., Lepping, R.P., Boardsen, S.A., Anderson, B.J., Korth, H.: 2012, Remote and in situ observations of an unusual Earth-directed coronal mass ejection from multiple viewpoints. J. Geophys. Res. 117(A6), A06106. DOI. ADS.

    ADS  Article  Google Scholar 

  • Nieves-Chinchilla, T., Linton, M.G., Hidalgo, M.A., Vourlidas, A., Savani, N.P., Szabo, A., Farrugia, C., Yu, W.: 2016, A circular-cylindrical flux-rope analytical model for magnetic clouds. Astrophys. J. 823(1), 27. DOI. ADS.

    ADS  Article  Google Scholar 

  • Nieves-Chinchilla, T., Linton, M.G., Hidalgo, M.A., Vourlidas, A.: 2018, Elliptic-cylindrical analytical flux rope model for magnetic clouds. Astrophys. J. 861(2), 139. DOI. ADS.

    ADS  Article  Google Scholar 

  • Nieves-Chinchilla, T., Jian, L.K., Balmaceda, L., Vourlidas, A., dos Santos, L.F.G., Szabo, A.: 2019, Unraveling the internal magnetic field structure of the Earth-directed interplanetary coronal mass ejections during 1995–2015. Solar Phys. 294(7), 89. DOI. ADS.

    ADS  Article  Google Scholar 

  • Oliphant, T.: 2019, SciPy ‘odeint’ function. https://github.com/scipy/scipy/blob/v1.4.1/scipy/integrate/odepack.py#L29-L260.

  • Oz, E., Myers, C.E., Yamada, M., Ji, H., Kulsrud, R.M., Xie, J.: 2011, Experimental verification of the Kruskal-Shafranov stability limit in line-tied partial-toroidal plasmas. Phys. Plasmas 18, 102107. DOI. ADS.

    ADS  Article  Google Scholar 

  • Priest, E.R.: 1990, The equilibrium of magnetic flux ropes (tutorial lecture). In: Physics of Magnetic Flux Ropes. Geoph. Monog. Series 58. DOI. ADS.

    Chapter  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2004, The fraction of interplanetary coronal mass ejections that are magnetic clouds: evidence for a solar cycle variation. Geophys. Res. Lett. 31(18), L18804. DOI. ADS.

    ADS  Article  Google Scholar 

  • Rinne, H.: 2009, The Weibull Distribution: A Handbook, CRC Press, Boca Raton.

    MATH  Google Scholar 

  • Romashets, E.P., Vandas, M.: 2003, Force-free field inside a toroidal magnetic cloud. Geophys. Res. Lett. 30(20), 2065. DOI. ADS.

    ADS  Article  MATH  Google Scholar 

  • Schuessler, M.: 1979, Magnetic buoyancy revisited: analytical and numerical results for rising flux tubes. Astron. Astrophys. 71(1–2), 79. ADS.

    ADS  Google Scholar 

  • Schwarzschild, B.M.: 1981, Reversed-field pinch stable 8 msec. Phys. Today 34(9), 20. DOI. ADS.

    ADS  Article  Google Scholar 

  • Shafranov, V.D.: 1958, On magnetohydrodynamical equilibrium configurations. J. Exp. Theor. Phys. 6, 545. ADS.

    ADS  MathSciNet  MATH  Google Scholar 

  • Sterling, A.C., Moore, R.L.: 2004, Evidence for gradual external reconnection before explosive eruption of a solar filament. Astrophys. J. 602(2), 1024. DOI. ADS.

    ADS  Article  Google Scholar 

  • Subramanian, P., Arunbabu, K.P., Vourlidas, A., Mauriya, A.: 2014, Self-similar expansion of solar coronal mass ejections: implications for Lorentz self-force driving. Astrophys. J. 790(2), 125. DOI. ADS.

    ADS  Article  Google Scholar 

  • Titov, V.S., Démoulin, P.: 1999, Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707. ADS.

    ADS  Google Scholar 

  • Török, T., Kliem, B.: 2005, Confined and ejective eruptions of kink-unstable flux ropes. Astrophys. J. Lett. 630(1), L97. DOI. ADS.

    ADS  Article  Google Scholar 

  • Török, T., Kliem, B.: 2007, Numerical simulations of fast and slow coronal mass ejections. Astron. Nachr. 328(8), 743. DOI. ADS.

    ADS  Article  Google Scholar 

  • van Ballegooijen, A.A., Martens, P.C.H.: 1989, Formation and eruption of solar prominences. Astrophys. J. 343, 971. DOI. ADS.

    ADS  Article  Google Scholar 

  • Vemareddy, P., Cheng, X., Ravindra, B.: 2016, Sunspot rotation as a driver of major solar eruptions in the NOAA active region 12158. Astrophys. J. 829(1), 24. DOI. ADS.

    ADS  Article  Google Scholar 

  • Vemareddy, P., Démoulin, P.: 2017, Successive injection of opposite magnetic helicity in Solar active region NOAA 11928. Astron. Astrophys. 597, A104. DOI. ADS.

    ADS  Article  Google Scholar 

  • Voslamber, D., Callebaut, D.K.: 1962, Stability of force-free magnetic fields. Phys. Rev. 128, 2016. DOI. ADS.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  • Vourlidas, A., Colaninno, R., Nieves-Chinchilla, T., Stenborg, G.: 2011, The first observation of a rapidly rotating coronal mass ejection in the middle corona. Astrophys. J. Lett. 733(2), L23. DOI. ADS.

    ADS  Article  Google Scholar 

  • Wang, Y., Zhuang, B., Hu, Q., Liu, R., Shen, C., Chi, Y.: 2016, On the twists of interplanetary magnetic flux ropes observed at 1 AU. J. Geophys. Res. 121(10), 9316. DOI. ADS.

    Article  Google Scholar 

  • Wang, Y., Shen, C., Liu, R., Liu, J., Guo, J., Li, X., Xu, M., Hu, Q., Zhang, T.: 2018, Understanding the twist distribution inside magnetic flux ropes by anatomizing an interplanetary magnetic cloud: twist distribution in an interplanetary MC. J. Geophys. Res. 123(5), 3238. DOI. ADS.

    Article  Google Scholar 

  • Woltjer, L.: 1958, A theorem on force-free magnetic fields. Proc. Natl. Acad. Sci. USA 44, 489. DOI. ADS.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  • Yurchyshyn, V., Abramenko, V., Tripathi, D.: 2009, Rotation of white-light coronal mass ejection structures as inferred from LASCO coronagraph. Astrophys. J. 705(1), 426. DOI. ADS.

    ADS  Article  Google Scholar 

Download references

Acknowledgements

M. Florido-Llinas thanks CFIS (UPC) and her family for the funding support, and is very grateful to the Heliospheric Physics Laboratory (HSD) at NASA Goddard Space Flight Center for providing the hosting and guidance to carry out this research as part of her bachelor thesis. The work of T. Nieves-Chinchilla is supported by the Solar Orbiter and Parker Solar Probe missions. The work of M.G. Linton is supported by the Office of Naval Research 6.1 program and by the NASA Living With a Star program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Florido-Llinas.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Towards Future Research on Space Weather Drivers

Guest Editors: Hebe Cremades and Teresa Nieves-Chinchilla

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Florido-Llinas, M., Nieves-Chinchilla, T. & Linton, M.G. Analysis of the Helical Kink Stability of Differently Twisted Magnetic Flux Ropes. Sol Phys 295, 118 (2020). https://doi.org/10.1007/s11207-020-01687-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01687-z

Keywords

  • Flux ropes
  • Twist distribution
  • Kink instability
  • Coronal mass ejections
  • Magnetic fields