Skip to main content

Solar 11-Year Cycle Signal in Stratospheric Nitrogen Dioxide—Similarities and Discrepancies Between Model and NDACC Observations

Abstract

NOx (NO2 and NO) plays an important role in controlling stratospheric ozone. Understanding the change in stratospheric NOx and its global pattern is important for predicting future changes in ozone and the corresponding implications on the climate. Stratospheric NOx is mainly produced by the reaction of N2O with the photochemically produced O(1D) and, therefore, it is expected to vary with changes in solar UV irradiance during the solar cycle. Previous studies on this topic, often limited by the relatively short continuous data, show puzzling results. The effect of the 1991 Pinatubo eruption might have caused interference in the data analysis. In this study, we examine the NO2 vertical column density (VCD) data from the Network for the Detection of Atmospheric Composition Change (NDACC). Data collected at 16 stations with continuous long-term observations covering the most recent Solar Cycles 23 and 24 were analyzed. We found positive correlations between changes in NO2 VCD and solar Lyman-\(\alpha \) over nine stations (mostly in the Northern Hemisphere) and negative correlations over three stations (mostly in the Southern Hemisphere). The other four stations do not show significant NO2 solar-cycle signal. The varying NO2 responses from one location to another are likely due to different geo-locations (latitude and altitude). In particular, two high-altitude stations show the strongest positive NO2 solar-cycle signals. Our 1D chemical-transport model calculations help explain the altitude dependence of NO2 response to the solar cycle. NO2 solar-cycle variability is suggested to play an important role controlling O3 at an altitude range from \(\approx20~\mbox{km}\) to near 60 km, while OH solar-cycle variability controls O3 at 40 – 90 km. While observations show both positive and negative NO2 responses to solar forcing, the 1D model predicts negative NO2 responses to solar UV changes throughout the middle atmosphere. 3D global model results suggest complex roles of dynamics in addition to photochemistry. The energetic particle-induced NO2 variabilities could also contribute significantly to the NO2 variability during solar cycles.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  • Allen, M., Lunine, J.I., Yung, Y.L.: 1984, The vertical distribution of ozone in the mesosphere and lower thermosphere. J. Geophys. Res. 89, 4841. DOI.

    ADS  Article  Google Scholar 

  • Allen, M., Yung, Y.L., Waters, J.W.: 1981, Vertical transport and photochemistry in the terrestrial mesosphere and lower thermosphere (50–120 km). J. Geophys. Res. 86, 3617. DOI.

    ADS  Article  Google Scholar 

  • Ball, W.T., Mortlock, D.J., Egerton, J.S., Haigh, J.D.: 2014, Assessing the relationship between spectral solar irradiance and stratospheric ozone using Bayesian inference. J. Space Weather Space Clim. 4, A25. DOI.

    ADS  Article  Google Scholar 

  • Bauer, R., Rozanov, A., McLinden, C.A., Gordley, L.L., Lotz, W., Russell, J.M. III, Walker, K.A., et al.: 2012, Validation of SCIAMACHY limb NO2 profiles using solar occultation measurements. Atmos. Meas. Tech. 5, 1059. DOI.

    Article  Google Scholar 

  • Beig, G., Fadnavis, S., Schmidt, H., Brasseur, G.P.: 2012, Inter-comparison of 11-year solar cycle response in mesospheric ozone and temperature obtained by HALOE satellite data and HAMMONIA model. J. Geophys. Sci. 117, D00P10. DOI.

    Article  Google Scholar 

  • Boersma, K.F., Eskes, H.J., Dirksen, R.J., van der A, R.J., Veefkind, J.P., Stammes, P., Huijnen, V., et al.: 2011, An improved retrieval of tropospheric NO2 columns from the Ozone Monitoring Instrument. Atmos. Meas. Tech. 4, 1905. DOI.

    Article  Google Scholar 

  • Brasseur, G.P., Solomon, S.: 2005, Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, 3rd edn. Springer, Dordrecht.

    Book  Google Scholar 

  • Dirksen, R.J., Boersma, K.F., Eskes, H.J., Ionov, D.V., Bucsela, E.J., Levelt, P.F., Kelder, H.M.: 2011, Evaluation of stratospheric NO2 retrieved from the Ozone Monitoring Instrument: intercomparison, diurnal cycle, and trending. J. Geophys. Res. 116, D08305. DOI.

    ADS  Article  Google Scholar 

  • Ermolli, I., Matthes, K., Dudok de Wit, T., Krivova, N.A., Tourpali, K., Weber, M., et al.: 2013, Recent variability of the solar spectral irradiance and its impact on climate modeling. Atmos. Chem. Phys. 13, 3945. DOI.

    ADS  Article  Google Scholar 

  • Frieß, U., Kreher, K., Johnston, P., Platt, U.: 2005, Ground-based DOAS measurements of stratospheric trace gases at two Antarctic stations during the 2002 ozone hole period. J. Atmos. Sci. 62, 765.

    ADS  Article  Google Scholar 

  • Garcia, R.R., López-Puertas, M., Funke, B., Marsh, D.R., Kinnison, D.E., Smith, A.K., González-Galindo, F.: 2014, On the distribution of CO2 and CO in the mesosphere and lower thermosphere. J. Geophys. Res., Atmos. 119, 5700. DOI.

    ADS  Article  Google Scholar 

  • Gruzdev, A.N.: 2008, Latitudinal dependence of variations in stratospheric NO2 content. Atmos. Ocean. Phys. 44, 319. DOI.

    Article  Google Scholar 

  • Gruzdev, A.N.: 2009, Latitudinal structure of variations and trends in stratospheric NO2. Int. J. Remote Sens. 30, 4227. DOI.

    ADS  Article  Google Scholar 

  • Gruzdev, A.N.: 2014, Estimate of the effects of Pinatubo eruption in stratospheric O3 and NO2 contents taking into account the variations in the solar activity. Atmos. Ocean. Opt. 27, 403. DOI.

    Article  Google Scholar 

  • Haigh, J.D., Winning, A.R., Toumi, R., Harder, J.W.: 2010, An influence of solar spectral variations on radiative forcing of climate. Nature 467, 696. DOI.

    ADS  Article  Google Scholar 

  • Hendrick, F., Mahieu, E., Bodeker, G.E., Boersma, K.F., Chipperfield, M.P., De Maziere, M., et al.: 2012, Analysis of stratospheric NO2 trends above Jungfraujoch using ground-based UV-visible, FTIR, and satellite nadir observations. Atmos. Chem. Phys. 12, 8851. DOI.

    ADS  Article  Google Scholar 

  • Hood, L.L., Soukharev, B.E.: 2006, Solar induced variations of odd nitrogen: multiple regression analysis of UARS HALOE data. Geophys. Res. Lett. 33, L22805. DOI.

    ADS  Article  Google Scholar 

  • Huang, N.E., Shen, Z., Long, S.R., Wu, M.L.C., Shih, H.H., Zheng, Q.N., et al.: 1998, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London Ser. A 454, 903. DOI.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  • Jackman, C.H., Marsh, D.R., Vitt, F.M., Garcia, R.R., Randall, C.E., Fleming, E.L., et al.: 2009, Long-term middle atmospheric influence of very large solar proton events. J. Geophys. Res. 114, D11304. DOI.

    ADS  Article  Google Scholar 

  • Jacob, D.J.: 1999, Introduction to Atmospheric Chemistry, Princeton University Press, Princeton.

    Google Scholar 

  • Johnston, P.V., McKenzie, R.L.: 1989, NO2 observations at \(45^{\circ}\mbox{S}\) during the decreasing phase of solar cycle 21, from 1980 to 1987. J. Geophys. Res. 94, 3473. DOI.

    ADS  Article  Google Scholar 

  • Kobayashi-Kirschvink, K.J., Li, K.F., Shia, R.-L., Yung, Y.L.: 2012, Fundamental modes of atmospheric CFC-11 from empirical mode decomposition. Adv. Adapt. Data Anal. 4, 1250024. DOI.

    MathSciNet  Article  Google Scholar 

  • Langematz, U., Grenfell, J.L., Matthes, K., Mieth, P., Kunze, M., Steil, B., Bruhl, C.: 2005, Chemical effects in 11-year solar cycle simulations with the Freie Universität Berlin Climate Middle Atmosphere Model with online chemistry (FUB-CMAM-CHEM). Geophys. Res. Lett. 32, L13803. DOI.

    ADS  Article  Google Scholar 

  • Li, K.-F., Zhang, Q., Tung, K.-K., Yung, Y.L.: 2016, Resolving a long-standing model-observation discrepancy on ozone solar cycle response. Earth Space Sci. 3, 431. DOI.

    ADS  Article  Google Scholar 

  • Liley, J.B., Johnson, P.V., McKenzie, R.L., Thomas, A.J., Boyd, I.S.: 2000, Stratospheric NO2 variations from a long time series at Lauder, New Zealand. J. Geophys. Res. 105, 11633. DOI.

    ADS  Article  Google Scholar 

  • Machol, J., Snow, M., Woodraska, D., Woods, T., Viereck, R., Coddington, O.: 2019, An improved Lyman-Alpha composite. Earth Space Sci. 6, 2263. DOI.

    ADS  Article  Google Scholar 

  • Maeda, S., Fuller-Rowell, T.J., Evans, D.S.: 1989, Zonally averaged dynamical and compositional response of the thermosphere to auroral activity during September 18–24, 1984. J. Geophys. Res. 94(A12), 16869. DOI.

    ADS  Article  Google Scholar 

  • Marsh, D., Mills, M.J., Kinnison, D.E., Garcia, R.R., Lamarque, J.-F., Calvo, N.: 2013, Climate change from 1850–2005 simulated in CESM1 (WACCM). J. Climate 26, 7372. DOI.

    ADS  Article  Google Scholar 

  • Merkel, A.W., Harder, J.W., Marsh, D.R., Smith, A.K., Fontenla, J.M., Woods, T.N.: 2011, The impact of solar spectral irradiance variability on middle atmospheric ozone. Geophys. Res. Lett. 38, L13802. DOI.

    ADS  Article  Google Scholar 

  • Mills, F.P., Cageao, R.P., Sander, S.P., Allen, M., Yung, Y.L., Remsberg, E.E., et al.: 2003, OH column abundance over Table Mountain Facility, California: intra-annual variations and comparisons to model predictions for 1997–2001. J. Geophys. Res., Atmos. 108, 4785. DOI.

    ADS  Article  Google Scholar 

  • Morgenstern, O., Hegglin, M.I., Rozanov, E., O’Connor, F.M., Abraham, N.L., Akiyoshi, H., et al.: 2017, Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI). Geosci. Model Dev. 10, 639. DOI.

    ADS  Article  Google Scholar 

  • Newman, S., Xu, X., Gurney, K.R., Hsu, Y.K., Li, K.L., Jiang, X., et al.: 2016, Toward consistency between trends in bottom-up CO2 emissions and top-down atmospheric measurements in the Los Angeles megacity. Atmos. Chem. Phys. 16, 3843. DOI.

    ADS  Article  Google Scholar 

  • Peck, E.D., Randall, C.E., Harvey, V.L., Marsh, D.R.: 2015, Simulated solar cycle effects on the middle atmosphere: WACCM3 versus WACCM4. J. Adv. Model. Earth Syst. 7, 806. DOI.

    ADS  Article  Google Scholar 

  • Remsberg, E.E.: 2008, On the response of Halogen Occultation Experiment (HALOE) stratospheric ozone and temperature to the 11-year solar cycle forcing. J. Geophys. Res. 113, D22304. DOI.

    ADS  Article  Google Scholar 

  • Remsberg, E.E.: 2013, Decadal-scale responses in middle and upper stratospheric ozone from SAGE II version 7 data. Atmos. Chem. Phys. Discuss. 13, 20239. DOI.

    ADS  Article  Google Scholar 

  • Rusch, D.W., Gerard, J.-C., Solomon, S., Crutzen, P.J., Reid, G.C.: 1981, The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere – I. Odd nitrogen. Planet. Space Sci. 29(7), 767.

    ADS  Article  Google Scholar 

  • Semeniuk, K., Fomichev, V.I., McConnell, J.C., Fu, C., Melo, S.M.L., Usoskin, I.G.: 2011, Middle atmosphere response to the solar cycle in irradiance and ionizing particle precipitation. Atmos. Chem. Phys. 11, 5045. DOI.

    ADS  Article  Google Scholar 

  • Shi, Y., Li, K.-F., Yung, Y.L., Aumann, H.H., Shi, Z., Hou, T.Y.: 2013, Principal modes of variability in the tropics from 9-year AMSU data. Clim. Dyn. 41, 1385. DOI.

    Article  Google Scholar 

  • Solanki, S.K., Krivova, N.A., Haigh, J.D.: 2013, Solar irradiance variability and climate. Annu. Rev. Astron. Astrophys. 51, 311. DOI.

    ADS  Article  Google Scholar 

  • Solomon, S.: 1999, Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 37, 275. DOI.

    ADS  Article  Google Scholar 

  • Swartz, W.H., Stolarski, R.S., Oman, L.D., Fleming, E.L., Jackman, C.H.: 2012, Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model. Atmos. Chem. Phys. 12, 5937. DOI.

    ADS  Article  Google Scholar 

  • Tapping, K.F.: 2013, The 10.7 cm solar radio flux (F10.7). Space Weather 11, 394. DOI.

    ADS  Article  Google Scholar 

  • Wang, S., Li, K-F., Pongetti, T.J., Sander, S.P., Yung, Y.L., Liang, M.-C., et al.: 2013, Atmospheric OH response to the most recent 11-year solar cycle. Proc. Nat. Acad. Sci. 110, 2023. DOI.

    ADS  Article  Google Scholar 

  • Wang, S., Zhang, Q., Millan, L., Li, K.-F., Yung, Y.L., Sander, S.P., et al.: 2015, First evidence of middle atmospheric HO2 response to 27-day solar cycles from satellite observations. Geophys. Res. Lett. 42, 10004. DOI.

    ADS  Article  Google Scholar 

  • Woods, T.N., Tobiska, W.K., Rottman, G.J., Worden, J.R.: 2000, Improved solar Lyman \(\alpha \) irradiance modeling from 1947 through 1999 based on UARS observations. J. Geophys. Res. 105(A12), 27195. DOI.

    ADS  Article  Google Scholar 

  • Wu, Z., Huang, N.E.: 2009, Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1, 1. DOI.

    Article  Google Scholar 

  • Yung, Y.L., DeMore, W.D.: 1999, Photochemistry of Planetary Atmospheres, Oxford University Press, Oxford.

    Google Scholar 

Download references

Acknowledgments

We acknowledge the support from the NASA Living with a Star (LWS) program (“Solar Forcing Impacts on Middle Atmospheric Ozone-controlling HOx and NOx Chemistry and Climate”). The NO2 VCD data used in this publication were obtained from the Network for the Detection of Atmospheric Composition Change (NDACC) and are publicly available (www.ndaccdemo.org/). We thank Valery P. Sinyakov at the Kyrgyz National University, Kyrgyz Republic, for sharing data over Issyk-Kul, Michel Van Roozendael and François Hendrick at the Belgian Institute for Space Aeronomy (BIRA-IASB) for sharing data over the Jungfraujoch and Harestua, Udo Frieß at the Institute of Environmental Physics, University of Heidelberg, for sharing data over Neumayer (Frießet al., 2005), Geraint Vaughan at University of Manchester for sharing data over Aberystwyth, Paul V. Johnston (Emeritus) at the National Institute of Water & Atmospheric Research Ltd (NIWA), New Zealand, for sharing data over Kiruna. The solar Lyman-\(\alpha\) composite used in this work includes measurements from multiple instruments and models. It was provided by Martin Snow from the LASP Interactive Solar Irradiance Datacenter (lasp.colorado.edu/lisird/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhui Wang.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Irradiance Variations of the Sun and Sun-like Stars

Guest Editors: Greg Kopp and Alexander Shapiro

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Li, KF., Zhu, D. et al. Solar 11-Year Cycle Signal in Stratospheric Nitrogen Dioxide—Similarities and Discrepancies Between Model and NDACC Observations. Sol Phys 295, 117 (2020). https://doi.org/10.1007/s11207-020-01685-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01685-1

Keywords

  • Solar 11-year cycle
  • Solar irradiance
  • Atmospheric response to solar cycle
  • Nitrogen dioxide variability