Berkebile-Stoiser, S., Veronig, A.M., Bein, B., Temmer, M.: 2012, Relation between the coronal mass ejection acceleration and the non-thermal flare characteristics. Astrophys. J.753, 88. DOI. ADS.
ADS
Article
Google Scholar
Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., et al.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys.162, 357. DOI. ADS.
ADS
Article
Google Scholar
Burlaga, L.F.: 1988, Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res.93, 7217. DOI. ADS.
ADS
Article
Google Scholar
Burlaga, L.F.: 1995, Interplanetary Magnetohydrodynamics, Oxford University Press, Oxford, 272. ADS.
Google Scholar
Burlaga, L.F., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res.86, 6673. DOI. ADS.
ADS
Article
Google Scholar
Burlaga, L.F., Skoug, R.M., Smith, C.W., Webb, D.F., Zurbuchen, T.H., Reinard, R.: 2001, Fast ejecta during the ascending phase of solar cycle 23: ACE observations, 1998 – 1999. J. Geophys. Res.106, 20957. DOI. ADS.
ADS
Article
Google Scholar
Burlaga, L.F., Ness, N.F., Acuña, M.H., Lepping, R.P., Connerney, J.E.P., Richardson, J.D.: 2008, Magnetic fields at the solar wind termination shock. Nature454, 75. DOI. ADS.
ADS
Article
Google Scholar
Cane, H.V., Richardson, I.G.: 2003, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996 – 2002. J. Geophys. Res.108, 1156. DOI. ADS.
Article
Google Scholar
Chi, Y., Shen, C., Wang, Y., Xu, M., Ye, P., Wang, S.: 2016, Statistical study of the interplanetary coronal mass ejections from 1995 to 2015. Solar Phys.291, 2419. DOI. ADS.
ADS
Article
Google Scholar
D’Huys, E., Seaton, D.B., Poedts, S., Berghmans, D.: 2014, Observational characteristics of coronal mass ejections without low-coronal signatures. Astrophys. J.795, 49. DOI. ADS.
ADS
Article
Google Scholar
Eyles, C.J., Harrison, R.A., Davis, C.J., Waltham, N.R., Shaughnessy, B.M., Mapson-Menard, H.C.A., et al.: 2009, The heliospheric imagers onboard the STEREO mission. Solar Phys.254, 387. DOI. ADS.
ADS
Article
Google Scholar
Gopalswamy, N.: 2006, Properties of interplanetary coronal mass ejections. Space Sci. Rev.124, 145. DOI. ADS.
ADS
Article
Google Scholar
Gopalswamy, N., Tsurutani, B., Yan, Y.: 2015, Short-term variability of the Sun–Earth system: an overview of progress made during the CAWSES-II period. Prog. Earth Planet. Sci.2, 13. DOI. ADS.
ADS
Article
Google Scholar
Gopalswamy, N., Yashiro, S., Krucker, S., Stenborg, G., Howard, R.A.: 2004, Intensity variation of large solar energetic particle events associated with coronal mass ejections. J. Geophys. Res.109, 12105. DOI. ADS.
Article
Google Scholar
Gosling, J.T.: 1990, Coronal mass ejections and magnetic flux ropes in interplanetary space. Geophys. Monogr.58, 343. DOI. ADS.
Article
Google Scholar
Green, L., Török, T., Vršnak, B., Manchester, W., Veronig, A.M.: 2018, The origin, early evolution and predictability of solar eruptions. Space Sci. Rev.214, 46. DOI. ADS.
ADS
Article
Google Scholar
Harrison, R.A., Davies, J.A., Möstl, C., Liu, Y., Temmer, M., Bisi, M.M., et al.: 2012, An analysis of the origin and propagation of the multiple coronal mass ejections of 2010 August 1. Astrophys. J.750, 45. DOI. ADS.
ADS
Article
Google Scholar
Hess, P., Zhang, J.: 2017, A study of the Earth-affecting CMEs of Solar Cycle 24. Solar Phys.292, 80. DOI. ADS.
ADS
Article
Google Scholar
Howard, T.A., DeForest, C.E.: 2012, Inner heliospheric flux rope evolution via imaging of coronal mass ejections. Astrophys. J.746, 64. DOI. ADS.
ADS
Article
Google Scholar
Howard, T.A., Harrison, R.A.: 2013, Stealth coronal mass ejections: a perspective. Solar Phys.285, 269.
ADS
Article
Google Scholar
Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., et al.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev.136, 67. DOI. ADS.
ADS
Article
Google Scholar
Howard, T.A., DeForest, C.E., Schneck, U.G., Alden, C.R.: 2017, Challenging some contemporary views of coronal mass ejections. II. The case for absent filaments. Astrophys. J.834, 86. DOI. ADS.
ADS
Article
Google Scholar
Hundhausen, A.J., Sawyer, C.B., House, L., Illing, R.M.E., Wagner, W.J.: 1984, Coronal mass ejections observed during the solar maximum mission – latitude distribution and rate of occurrence. J. Geophys. Res.89, 2639. DOI. ADS.
ADS
Article
Google Scholar
Illing, R.M.E., Hundhausen, A.J.: 1985, Observation of a coronal transient from 1.2 to 6 solar radii. J. Geophys. Res.90, 275. DOI. ADS.
ADS
Article
Google Scholar
Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of interplanetary coronal mass ejections at one AU during 1995 – 2004. Solar Phys.239, 393. DOI. ADS.
ADS
Article
Google Scholar
Kahler, S.W., Webb, D.F.: 2007, V arc interplanetary coronal mass ejections observed with the Solar Mass Ejection Imager. J. Geophys. Res.112, A09103. DOI. ADS.
ADS
Article
Google Scholar
Kilpua, E.K.J., Isavnin, A., Vourlidas, A., Koskinen, H.E.J., Rodriguez, L.: 2013, On the relationship between interplanetary coronal mass ejections and magnetic clouds. Ann. Geophys.31, 1251. DOI. ADS.
ADS
Article
Google Scholar
Kilpua, E.K.J., Balogh, A., von Steiger, R., Liu, Y.D.: 2017, Geoeffective properties of solar transients and stream interaction regions. Space Sci. Rev.212, 1271. DOI. ADS.
ADS
Article
Google Scholar
Kim, R.-S., Gopalswamy, N., Cho, K.-S., Moon, Y.-J., Yashiro, S.: 2013, Propagation characteristics of CMEs associated with magnetic clouds and ejecta. Solar Phys.284, 77. DOI. ADS.
ADS
Article
Google Scholar
Klein, L.W., Burlaga, L.F.: 1982, Interplanetary magnetic clouds at 1 AU. J. Geophys. Res.87, 613. DOI. ADS.
ADS
Article
Google Scholar
Lepping, R.P., Acuna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., Mariani, F., Ness, N.F., Neubauer, F.M., Whang, Y.C., Byrnes, J.B., Kennon, R.S., Panetta, P.V., Scheifele, J., Worley, E.M.: 1995, The WIND magnetic field investigation. Space Sci. Rev.71, 207. DOI. https://wind.nasa.gov/docs/MFI_Lepping_SSR1995.pdf.
ADS
Article
Google Scholar
Liu, Y.D., Luhmann, J.G., Möstl, C., Martinez-Oliveros, J.C., Bale, S.D., Lin, R.P., Harrison, R.A., Temmer, M., Webb, D.F., Odstrcil, D.: 2012, Interactions between coronal mass ejections viewed in coordinated imaging and in situ observations. Astrophys. J. Lett.746, L15. DOI. ADS.
ADS
Article
Google Scholar
Lugaz, N.: 2010, Accuracy and limitations of fitting and stereoscopic methods to determine the direction of coronal mass ejections from heliospheric imagers observations. Solar Phys.267, 411. DOI. ADS.
ADS
Article
Google Scholar
Lugaz, N., Farrugia, C.J., Smith, C.W., Paulson, K.: 2015, Extreme geomagnetic disturbances due to shocks within CMEs. Geophys. Res. Lett.42, 4694. DOI. ADS.
ADS
Article
Google Scholar
Ma, S., Attrill, G.D.R., Golub, L., Lin, J.: 2010, Shocks inside CMEs: a survey of properties from 1997 to 2006. Astrophys. J.722, 289. DOI. ADS.
ADS
Article
Google Scholar
Manchester, W., Kilpua, E.K.J., Liu, Y.D., Lugaz, N., Riley, P., Török, T., Vršnak, B.: 2017, The physical processes of CME/ICME evolution. Space Sci. Rev.212, 1159. DOI. ADS.
ADS
Article
Google Scholar
Maričić, D., Vršnak, B., Stanger, A.L., Veronig, A.M., Temmer, M., Roša, D.: 2007, Acceleration phase of coronal mass ejections: II. Synchronization of the energy release in the associated flare. Solar Phys.241, 99. DOI. ADS.
ADS
Article
Google Scholar
Maričić, D., Vršnak, B., Dumbović, M., Žic, T., Roša, D., Hržina, D., Lulić, S., Romštajn, I., et al.: 2014, Kinematics of interacting ICMEs and related Forbush decrease: case study. Solar Phys.289, 351. DOI. ADS.
ADS
Article
Google Scholar
McCauley, I.P., Su, Y., Schanche, N., Evans, E.K., Su, C., McKillop, S., Reeves, K.K.: 2015, Prominence and filament eruptions observed by the Solar Dynamics Observatory: statistical properties, kinematics, and online catalog. Solar Phys.290, 1703. DOI. ADS.
ADS
Article
Google Scholar
McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W.: 1998, Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer. Space Sci. Rev.86, 563. DOI. ADS.
ADS
Article
Google Scholar
Mitsakou, E., Moussas, X.: 2014, Statistical study of ICMEs and their sheaths during Solar Cycle 23 (1996 – 2008). Solar Phys.289, 3137. DOI. ADS.
ADS
Article
Google Scholar
Möstl, C., Rollett, T., Lugaz, N., Farrugia, C.J., Davies, J.A., Temmer, M., et al.: 2011, Arrival time calculation for interplanetary coronal mass ejections with circular fronts and application to STEREO observations of the 2009 February 13 eruption. Astrophys. J.741, 34. DOI. ADS.
ADS
Article
Google Scholar
Möstl, C., Rollett, T., Frahm, R.A., Liu, Y.D., Long, D.M., Colaninno, R.C., Reiss, M.A., Temmer, M., Farrugia, C.J., Posner, A., Dumbović, M., Janvier, M., Démoulin, P., Boakes, P., Devos, A., Kraaikamp, E., Mays, M.L., Vršnak, B.: 2015, Strong coronal channelling and interplanetary evolution of a solar storm up to Earth and Mars. Nat. Commun.6, 7135. DOI. ADS.
ADS
Article
Google Scholar
Munro, R.H., Gosling, J.T., Hildner, E., MacQueen, R.M., Poland, A.I., Ross, C.L.: 1979, The association of coronal mass ejection transients with other forms of solar activity. Solar Phys.61, 201. DOI. ADS.
ADS
Article
Google Scholar
Nakwacki, M.S., Dasso, S., Démoulin, P., Mandrini, C.H., Gulisano, A.M.: 2011, Dynamical evolution of a magnetic cloud from the Sun to 5.4 AU. Astron. Astrophys.535, 52. DOI. ADS.
ADS
Article
Google Scholar
Nieves-Chinchilla, T., Vourlidas, A., Raymond, J.C., Linton, M.G., Al-haddad, N., Savani, N.P., Szabo, A., Hidalgo, M.A.: 2018, Understanding the internal magnetic field configurations of ICMEs using more than 20 years of Wind observations. Solar Phys.293, 25. DOI. ADS.
ADS
Article
Google Scholar
Nieves-Chinchilla, T., Vourlidas, A., Raymond, J.C., Linton, M.G., Al-haddad, N., Savani, N.P., Szabo, A., Hidalgo, M.A.: 2019, Unraveling the internal magnetic field structure of the Earth-directed interplanetary coronal mass ejections during 1995 – 2015. Solar Phys.294, 89. DOI. ADS.
ADS
Article
Google Scholar
Nitta, N.V., Mulligan, T.: 2017, Earth-affecting coronal mass ejections without obvious low coronal signatures. Solar Phys.292, 125. DOI. ADS.
ADS
Article
Google Scholar
Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the Wind spacecraft. Space Sci. Rev.71, 55. DOI. ADS.
ADS
Article
Google Scholar
Paouris, E., Mavromichalaki, H.: 2017, Interplanetary coronal mass ejections resulting from Earth-directed CMEs using SOHO and ACE combined data during Solar Cycle 23. Solar Phys.292, 30. DOI. ADS.
ADS
Article
Google Scholar
Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during Solar Cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys.264, 189. DOI. ADS.
ADS
Article
Google Scholar
Robbrecht, E., Berghmans, D., Van der Linden, R.A.M.: 2009, Automated LASCO CME catalog for Solar Cycle 23: are CMEs scale invariant? Astrophys. J.691, 1222. DOI. ADS.
ADS
Article
Google Scholar
Rollett, T., Möstl, C., Temmer, M., Veronig, A.M., Farrugia, C.J., Biernat, H.K.: 2012, Constraining the kinematics of coronal mass ejections in the inner heliosphere with in-situ signatures. Solar Phys.276, 293. DOI. ADS.
ADS
Article
Google Scholar
Rouillard, A.P.: 2011, Relating white light and in situ observations of coronal mass ejections: a review. J. Atmos. Solar-Terr. Phys.73, 1201. DOI. ADS.
ADS
Article
Google Scholar
Rouillard, A.P., Davies, J.A., Forsyth, R.J., Rees, A., Davis, C.J., Harrison, R.A., Lockwood, M., Bewsher, D., Crothers, S.R., Eyles, C.J., Hapgood, M., Perry, C.H.: 2008, First imaging of corotating interaction regions using the STEREO spacecraft. Geophys. Res. Lett.35, 10110. DOI. ADS.
ADS
Article
Google Scholar
Schmieder, B., Démoulin, P., Aulanier, G.: 2013, Solar filament eruptions and their physical role in triggering coronal mass ejections. Adv. Space Res.51, 1967. DOI. ADS.
ADS
Article
Google Scholar
Sheeley, N.R. Jr., Michels, D.J., Howard, R.A., Koomen, M.J.: 1980, Initial observations with the SOLWIND coronagraph. Astrophys. J. Lett.237, L99. DOI. ADS.
ADS
Article
Google Scholar
Sheeley, N.R. Jr., Walters, J.H., Wang, Y.-M., Howard, R.A.: 1999, Continuous tracking of coronal outflows: two kinds of coronal mass ejections. J. Geophys. Res.104, 24739. DOI. ADS.
ADS
Article
Google Scholar
Shen, C., Wang, Y., Wang, S., Liu, Y., Liu, Y., Vourlidas, A., Miao, B., Ye, P., Liu, J., Zhou, Z.: 2012, Super-elastic collision of large-scale magnetized plasmoids in the heliosphere. Nat. Phys.8, 923. DOI. ADS.
Article
Google Scholar
Smith, C., L’Heureux, J., Ness, N., Acuna, M., Burlaga, L., Scheifele, J.: 1998, The ACE magnetic fields experiment. Space Sci. Rev.86, 613. DOI. ADS.
ADS
Article
Google Scholar
Temmer, M., Veronig, A.M., Vršnak, B., Rybák, J., Gömöry, P., Stoiser, S., Maričić, D.: 2008, Acceleration in fast halo CMEs and synchronized flare HXR bursts. Astrophys. J. Lett.673, 95. DOI. ADS.
ADS
Article
Google Scholar
Temmer, M., Veronig, A.M., Kontar, E.P., Krucker, S., Vršnak, B.: 2010, Combined STEREO/RHESSI study of coronal mass ejection acceleration and particle acceleration in solar flares. Astrophys. J.712, 1410. DOI. ADS.
ADS
Article
Google Scholar
Temmer, M., Vršnak, B., Rollett, T., Bein, B., de Koning, C.A., Liu, Y., et al.: 2012, Characteristics of kinematics of a coronal mass ejection during the 2010 August 1 CME-CME interaction event. Astrophys. J.749, 57. DOI. ADS.
ADS
Article
Google Scholar
Thompson, W.T., Davila, J.M., Fisher, R.R., Orwig, L.E., Mentzell, J.E., Hetherington, S.E., et al.: 2003, COR1 inner coronagraph for STEREO-SECCHI. Proc. SPIE4853, 1. DOI. ADS.
ADS
Article
Google Scholar
Veronig, A.M., Podladchikova, T., Dissauer, K., Temmer, M., Seaton, D.B., Long, D., et al.: 2018, Genesis and impulsive evolution of the 2017 September 10 coronal mass ejection. Astrophys. J.868, 107. DOI. ADS.
ADS
Article
Google Scholar
Vourlidas, A., Howard, R.A., Esfandiari, E., Patsourakos, S., Yashiro, S., Michalek, G.: 2010, Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle. Astrophys. J.722, 1522. DOI. ADS.
ADS
Article
Google Scholar
Vourlidas, A., Lynch, B.J., Howard, R.A., Li, Y.: 2013, How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Solar Phys.284, 179. DOI. ADS.
ADS
Article
Google Scholar
Vršnak, B., Lulić, S.: 2000, Formation of coronal MHD shock waves – I. The basic mechanism. Solar Phys.196, 157. DOI. ADS.
ADS
Article
Google Scholar
Vršnak, B., Maričić, D., Stanger, L., Veronig, A.: 2004, Coronal mass ejection of 15 May 2001: II. Coupling of the CME acceleration and the flare energy release. Solar Phys.225, 355. DOI. ADS.
ADS
Article
Google Scholar
Warmuth, A.: 2015, Large-scale globally propagating coronal waves. Living Rev. Solar Phys.12, 3. DOI. ADS.
ADS
Article
Google Scholar
Webb, D.F.: 2015, Eruptive prominences and their association with coronal mass ejections. In: Solar Prominences, Astophys. Space. Sci. Lib.415, 411. DOI. ADS.
Chapter
Google Scholar
Woods, T.N., Eparvier, F.G., Hock, R., Jones, A.R., Woodraska, D., Judge, D., et al.: 2012, Extreme ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): overview of science objectives, instrument design, data products, and model developments. Solar Phys.275, 115. DOI. ADS.
ADS
Article
Google Scholar
Wuelser, J., Lemen, J.R., Tarbell, T.D., Wolfson, C.J., Cannon, J.C., Carpenter, B.A., et al.: 2004, EUVI: the STEREO-SECCHI extreme ultraviolet imager. Proc. SPIE5171, 111. DOI. ADS.
ADS
Article
Google Scholar
Zhang, J., Dere, K.P., Howard, R.A., Kundu, M.R., White, S.M.: 2001, On the temporal relationship between coronal mass ejections and flares. Astrophys. J.559, 452. DOI. ADS.
ADS
Article
Google Scholar
Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev.123, 31. DOI. ADS.
ADS
Article
Google Scholar