Skip to main content

Advertisement

Log in

Thermodynamic Structure of the Solar Corona: Tomographic Reconstructions and MHD Modeling

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We carry out a study of the global three-dimensional (3D) structure of the electron density and temperature of the quiescent inner solar corona (\(r<1.25\,\mathrm{R_{\odot }}\)) by means of tomographic reconstructions and magnetohydrodynamic simulations. We use differential emission measure tomography (DEMT) and the Alfvén Wave Solar Model (AWSoM), in their latest versions. Two target rotations were selected from the solar minimum between Solar Cycles (SCs) 23 and 24 and the declining phase of SC 24. We report in quantitative detail on the 3D thermodynamic structure of the core and outer layers of the streamer belt, and of the high latitude coronal holes (CH), as revealed by the DEMT analysis. We report on the presence of two types of structures within the streamer belt, loops with temperature decreasing/increasing with height (dubbed down/up loops), as reported first in previous DEMT studies. We also estimate the heating energy flux required at the coronal base to keep these structures stable, found to be of order \(10^{5}~\text{erg}\,\text{cm}^{-2}\,\text{s}^{-1}\), consistently with previous DEMT and spectroscopic studies. We discuss how these findings are consistent with coronal dissipation of Alfvén waves. We compare the 3D results of DEMT and AWSoM in distinct magnetic structures. We show that the agreement between the products of both techniques is the best so far, with an overall agreement \(\lesssim 20\%\), depending on the target rotation and the specific coronal region. In its current implementation the ASWsoM model cannot reproduce down loops though. Also, in the source region of the fast and slow components of the solar wind, the electron density of the AWSoM model increases with latitude, opposite to the trend observed in DEMT reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  • Arge, C.N., Henney, C.J., Koller, J., Compeau, C.R., Young, S., MacKenzie, D., Fay, A., Harvey, J.W.: 2010, Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model. In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Twelfth International Solar Wind Conference, American Institute of Physics Conference Series1216, 343. DOI. ADS.

    Chapter  Google Scholar 

  • Aschwanden, M.J.: 2004, Physics of the Solar Corona. An Introduction. ADS.

  • Aschwanden, M.J., Boerner, P.: 2011, Solar corona loop studies with the atmospheric imaging assembly. I. Cross-sectional temperature structure. Astrophys. J.732, 81. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Schrijver, C.J.: 2002, Analytical approximations to hydrostatic solutions and scaling laws of coronal loops. Astrophys. J. Suppl.142(2), 269. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chandran, B.D.G., Dennis, T.J., Quataert, E., Bale, S.D.: 2011, Incorporating kinetic physics into a two-fluid solar-wind model with temperature anisotropy and low-frequency Alfvén-wave turbulence. Astrophys. J.743(2), 197. DOI. ADS.

    Article  ADS  Google Scholar 

  • Del Zanna, G.: 2013, The multi-thermal emission in solar active regions. Astron. Astrophys.558, A73. DOI. ADS.

    Article  Google Scholar 

  • Del Zanna, G., Dere, K.P., Young, P.R., Landi, E., Mason, H.E.: 2015, CHIANTI - An atomic database for emission lines. Version 8. Astron. Astrophys.582, A56. DOI. ADS.

    Article  Google Scholar 

  • Frazin, R.A.: 2000, Tomography of the solar corona. I. A robust, regularized, positive estimation method. Astrophys. J.530, 1026. DOI. ADS.

    Article  ADS  Google Scholar 

  • Frazin, R.A., Vásquez, A.M., Kamalabadi, F.: 2009, Quantitative, three-dimensional analysis of the global corona with multi-spacecraft differential emission measure tomography. Astrophys. J.701, 547. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hahn, M., Savin, D.W.: 2014, Evidence for wave heating of the quiet-sun corona. Astrophys. J.795(2), 111. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hannah, I.G., Kontar, E.P.: 2012, Differential emission measures from the regularized inversion of Hinode and SDO data. Astron. Astrophys.539, A146. DOI. ADS.

    Article  ADS  Google Scholar 

  • Henney, C.J., Toussaint, W.A., White, S.M., Arge, C.N.: 2012, Forecasting F10.7 with solar magnetic flux transport modeling. Space Weather10, S02011. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hill, F., Fischer, G., Grier, J., Leibacher, J.W., Jones, H.B., Jones, P.P., Kupke, R., Stebbins, R.T.: 1994, The global oscillation network group site survey - Part one. Solar Phys.152(2), 321. DOI. ADS.

    Article  ADS  Google Scholar 

  • Huang, Z., Frazin, R.A., Landi, E., Manchester, W.B., Vásquez, A.M., Gombosi, T.I.: 2012, Newly discovered global temperature structures in the quiet sun at solar minimum. Astrophys. J.755, 86. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jin, M., Manchester, W.B., van der Holst, B., Oran, R., Sokolov, I., Toth, G., Gombosi, T.I., Vourlidas, A., Liu, Y., Sun, X.: 2012, Simulate the coronal mass ejection on 2011 March 7 from chromosphere to 1 AU. In: AGU Fall Meeting Abstracts 2012, SH33E. ADS.

    Google Scholar 

  • Landi, E., Young, P.R., Dere, K.P., Del Zanna, G., Mason, H.E.: 2013, CHIANTI - An atomic database for emission lines. XIII. Soft X-ray improvements and other changes. Astrophys. J.763, 86. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys.275, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lionello, R., Linker, J.A., Mikić, Z.: 2009, Multispectral emission of the Sun during the first whole Sun month: magnetohydrodynamic simulations. Astrophys. J.690(1), 902. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lithwick, Y., Goldreich, P., Sridhar, S.: 2007, Imbalanced strong MHD turbulence. Astrophys. J.655(1), 269. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lloveras, D.G., Vásquez, A.M., Nuevo, F.A., Frazin, R.A.: 2017, Comparative study of the three-dimensional thermodynamical structure of the inner corona of solar minimum Carrington rotations 1915 and 2081. Solar Phys.292(10), 153. DOI.

    Article  ADS  Google Scholar 

  • López, F.M., Cremades, H., Balmaceda, L.A., Nuevo, F.A., Vásquez, A.M.: 2019, Estimating the mass of CMEs from the analysis of EUV dimmings. Astron. Astrophys.627, A8. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mac Cormack, C., Vásquez, A.M., López Fuentes, M., Nuevo, F.A., Landi, E., Frazin, R.A.: 2017, Energy input flux in the global quiet-sun corona. Astrophys. J.843, 70. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mackovjak, Š., Dzifčáková, E., Dudík, J.: 2014, Differential emission measure analysis of active region cores and quiet sun for the non-Maxwellian \(\kappa \)-distributions. Astron. Astrophys.564, A130. DOI. ADS.

    Article  ADS  Google Scholar 

  • Morgan, H., Pickering, J.: 2019, SITES: Solar iterative temperature emission solver for differential emission measure inversion of EUV observations. Solar Phys.294(10), 135. DOI. ADS.

    Article  ADS  Google Scholar 

  • Morgan, H., Taroyan, Y.: 2017, Global conditions in the solar corona from 2010 to 2017. Sci. Adv.3(7), e1602056. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nuevo, F.A., Huang, Z., Frazin, R., Manchester, W.B., Jin, M., Vásquez, A.M.: 2013, Evolution of the global temperature structure of the solar corona during the minimum between Solar Cycles 23 and 24. Astrophys. J.773(1), 9. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nuevo, F.A., Vásquez, A.M., Landi, E., Frazin, R.: 2015, Multimodal differential emission measure in the solar corona. Astrophys. J.811(2), 128. DOI. ADS.

    Article  ADS  Google Scholar 

  • Oran, R., Landi, E., van der Holst, B., Lepri, S.T., Vásquez, A.M., Nuevo, F.A., Frazin, R., Manchester, W., Sokolov, I., Gombosi, T.I.: 2015, A steady-state picture of solar wind acceleration and charge state composition derived from a global wave-driven MHD model. Astrophys. J.806(1), 55. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pickering, J., Morgan, H.: 2019, GRID-SITES: Gridded solar iterative temperature emission solver for fast DEM inversion. Solar Phys.294(10), 136. DOI. ADS.

    Article  ADS  Google Scholar 

  • Plowman, J., Kankelborg, C., Martens, P.: 2013, Fast differential emission measure inversion of solar coronal data. Astrophys. J.771, 2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Powell, K.G., Roe, P.L., Linde, T.J., Gombosi, T.I., De Zeeuw, D.L.: 1999, A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys.154(2), 284. DOI. ADS.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: 2002, Numerical recipes in C++: the art of scientific computing. ADS.

  • Sachdeva, N., van der Holst, B., Manchester, W.B., Tóth, G., Chen, Y., Lloveras, D.G., Vásquez, A.M., Lamy, P., Wojak, J., Jackson, B.V., Yu, H.-S., Henney, C.J.: 2019, Validation of the Alfvén Wave Solar Atmosphere Model (AWSoM) with observations from the low corona to 1 au. Astrophys. J.887(1), 83. DOI. ADS.

    Article  ADS  Google Scholar 

  • Saqri, J., Veronig, A.M., Heinemann, S.G., Hofmeister, S.J., Temmer, M., Dissauer, K., Su, Y.: 2020, Differential emission measure plasma diagnostics of a long-lived coronal hole. Solar Phys.295(1), 6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schiff, A.J., Cranmer, S.R.: 2016, Explaining inverted-temperature loops in the quiet solar corona with magnetohydrodynamic wave-mode conversion. Astrophys. J.831(1), 10. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schmelz, J.T., Christian, G.M., Chastain, R.A.: 2016, The coronal loop inventory project: expanded analysis and results. Astrophys. J.831(2), 199. DOI. ADS.

    Article  ADS  Google Scholar 

  • Serio, S., Peres, G., Vaiana, G.S., Golub, L., Rosner, R.: 1981, Closed coronal structures. II - Generalized hydrostatic model. Astrophys. J.243, 288. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shearer, P., Frazin, R.A., Hero, I., Alfred, O., Gilbert, A.C.: 2012, The first stray light corrected extreme-ultraviolet images of solar coronal holes. Astrophys. J. Lett.749(1), L8. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sokolov, I.V., van der Holst, B., Oran, R., Downs, C., Roussev, I.I., Jin, M., Manchester, W.B., Evans, R.M., Gombosi, T.I.: 2013, Magnetohydrodynamic waves and coronal heating: Unifying empirical and Mhd turbulence models. Astrophys. J.764(1), 23. DOI.

    Article  ADS  Google Scholar 

  • Spitzer, L.: 1962, Physics of Fully Ionized Gases. ADS.

  • Tóth, G., van der Holst, B., Sokolov, I.V., De Zeeuw, D.L., Gombosi, T.I., Fang, F., Manchester, W.B., Meng, X., Najib, D., Powell, K.G., et al.: 2012, Adaptive numerical algorithms in space weather modeling. J. Comput. Phys.231(3), 870. DOI.

    Article  ADS  MathSciNet  Google Scholar 

  • van der Holst, B., Manchester, I.W.B., Frazin, R.A., Vásquez, A.M., Tóth, G., Gombosi, T.I.: 2010, A data-driven, two-temperature solar wind model with Alfvén waves. Astrophys. J.725(1), 1373. DOI. ADS.

    Article  ADS  Google Scholar 

  • van der Holst, B., Sokolov, I.V., Meng, X., Jin, M., Manchester, I.W.B., Tóth, G., Gombosi, T.I.: 2014, Alfvén Wave Solar Model (AWSoM): coronal heating. Astrophys. J.782(2), 81. DOI. ADS.

    Article  ADS  Google Scholar 

  • van der Holst, B., Manchester, W.B., Klein, K.G., Kasper, J.C.: 2019, Predictions for the first Parker Solar Probe encounter. Astrophys. J.872, L18. DOI.

    Article  ADS  Google Scholar 

  • Vásquez, A.M.: 2016, Seeing the solar corona in three dimensions. Adv. Space Res.57, 1286. DOI.

    Article  ADS  Google Scholar 

  • Vásquez, A.M., Frazin, R.A., Kamalabadi, F.: 2009, 3D temperatures and densities of the solar corona via multi-spacecraft EUV tomography: Analysis of prominence cavities. Solar Phys.256(1–2), 73. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vásquez, A.M., Frazin, R.A., Manchester, I., Ward, B.: 2010, The solar minimum corona from differential emission measure tomography. Astrophys. J.715(2), 1352. DOI. ADS.

    Article  ADS  Google Scholar 

  • Worden, J., Harvey, J.: 2000, An evolving synoptic magnetic flux map and implications for the distribution of photospheric magnetic flux. Solar Phys.195(2), 247. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wuelser, J.-P., Lemen, J.R., Tarbell, T.D., Wolfson, C.J., Cannon, J.C., Carpenter, B.A., Duncan, D.W., Gradwohl, G.S., Meyer, S.B., Moore, A.S., Navarro, R.L., Pearson, J.D., Rossi, G.R., Springer, L.A., Howard, R.A., Moses, J.D., Newmark, J.S., Delaboudiniere, J.-P., Artzner, G.E., Auchere, F., Bougnet, M., Bouyries, P., Bridou, F., Clotaire, J.-Y., Colas, G., Delmotte, F., Jerome, A., Lamare, M., Mercier, R., Mullot, M., Ravet, M.-F., Song, X., Bothmer, V., Deutsch, W.: 2004, EUVI: The STEREO-SECCHI extreme ultraviolet imager. In: Fineschi, S., Gummin, M.A. (eds.) Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE5171, 111. DOI. ADS.

    Chapter  Google Scholar 

Download references

Acknowledgements

D.G.L. and C.M.C. acknowledge CONICET doctoral fellowships (Res. Nr. 4870) that supported their participation in this research. D.G.L, A.M.V., F.A.N., and C.M.C. acknowledge ANPCyT grant 2016/0221 that partially supported their participation in this research. A.M.V. also acknowledges UBACyT grant 20020160100072BA that partially supported his participation in this research. W.M. and B.v.H acknowledge NSF grant 1663800 that partially supported his participation in this research. W.M. also acknowledges NASA grants NNX16AL12G and 80NSSC17K0686. The AIA/SDO data used in this study is courtesy of NASA/SDO and the AIA, EVE, and HMI science teams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego G. Lloveras.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Towards Future Research on Space Weather Drivers

Guest Editors: Hebe Cremades and Teresa Nieves-Chinchilla

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lloveras, D.G., Vásquez, A.M., Nuevo, F.A. et al. Thermodynamic Structure of the Solar Corona: Tomographic Reconstructions and MHD Modeling. Sol Phys 295, 76 (2020). https://doi.org/10.1007/s11207-020-01641-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01641-z

Keywords

Navigation