Skip to main content
Log in

Long-term (1749–2015) Variations of Solar UV Spectral Indices

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Solar radiation variability spans a wide range in time, ranging from seconds to decadal and longer. The nearly 40 years of measurements of solar irradiance from space established that the total solar irradiance varies by \(\approx 0.1\%\) in phase with the Sun’s magnetic cycle. Specific intervals of the solar spectrum, e.g., ultraviolet (UV), vary by orders of magnitude more. These variations can affect the Earth’s climate in a complex non-linear way. Specifically, some of the processes of interaction between solar UV radiation and the Earth’s atmosphere involve threshold processes and do not require a detailed reconstruction of the solar spectrum. For this reason a spectral UV index based on the (FUV-MUV) color has been recently introduced. This color is calculated using SORCE SOLSTICE integrated fluxes in the FUV and MUV bands. We present in this work the reconstructions of the solar (FUV-MUV) color and Ca ii K and Mg ii indices, from 1749–2015, using a semi-empirical approach based on the reconstruction of the area coverage of different solar magnetic features, i.e., sunspot, faculae and network. We remark that our results are in noteworthy agreement with latest solar UV proxy reconstructions that exploit more sophisticated techniques requiring historical full-disk observations. This makes us confident that our technique can represent an alternative approach which can complement classical solar reconstruction efforts. Moreover, this technique, based on broad-band observations, can be utilized to estimate the activity on Sun-like stars, that cannot be resolved spatially, hosting extra-solar planetary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Notes

  1. Actually, a correct determination of the ozone concentration with the atmospheric altitude based on the Chapman theory alone cannot explain the observed distribution of ozone. A detailed calculation requires the inclusion of the rates of photochemical reactions with temperature, a radiative transfer model for terrestrial atmosphere, and the \(\mathrm{NO}_{\mathrm{x}}\) catalytic cycles modulated by solar magnetic activity via solar energetic particles and cosmic rays modulation.

  2. The NSO Ca ii K emission index is available at: http://gong.nso.edu/data/magmap.

  3. The World Data Center SILSO (Sunspot Index and Long-term Solar Observations), Royal Observatory of Belgium, Brussels, data can be found at: http://sidc.be/silso/datafiles.

  4. The facular area coverage obtained from the PSPT are available at: http://lasp.colorado.edu/pspt_access.

  5. The plage composite from 1893 to 2015 is available at: http://www2.mps.mpg.de/projects/sun-climate/data.

  6. The sunspot area is available at SFO, a solar research facility associated with the California State University: http://www.csun.edu/SanFernandoObservatory/photoindex.html.

  7. The SPRM model is available at: http://lasp.colorado.edu/pspt_access.

  8. The sunspot area composite is available at: http://www2.mps.mpg.de/projects/sun-climate/data.html.

  9. The Kurucz website is available at http://kurucz.harvard.edu/.

References

  • Balmaceda, L., Solanki, S.K., Krivova, N.A., Foster, S.: 2009, A homogeneous database of sunspot areas covering more than 130 years. J. Geophys. Res.114, A7. DOI .

    Article  Google Scholar 

  • Berrilli, F., Florio, A., Ermolli, I.: 1998, On the geometrical properties of the chromospheric network. Solar Phys.180, 29. DOI . ADS .

    Article  ADS  Google Scholar 

  • Berrilli, F., Ermolli, I., Florio, A., Pietropaolo, E.: 1999, Average properties and temporal variations of the geometry of solar network cells. Astron. Astrophys.344, 965. ADS .

    ADS  Google Scholar 

  • Berrilli, F., Consolini, G., Pietropaolo, E., Caccin, B., Penza, V., Lepreti, F.: 2002, 2-D multiline spectroscopy of the solar photosphere. Astron. Astrophys.381, 253. DOI . ADS .

    Article  ADS  Google Scholar 

  • Berrilli, F., Del Moro, D., Consolini, G., Pietropaolo, E., Duvall, J.T.L., Kosovichev, A.G.: 2004, Structure properties of supergranulation and granulation. Solar Phys.221(1), 33. DOI . ADS .

    Article  ADS  Google Scholar 

  • Berrilli, F., del Moro, D., Florio, A., Santillo, L.: 2005a, Segmentation of photospheric and chromospheric solar features. Solar Phys.228, 81. DOI . ADS .

    Article  ADS  Google Scholar 

  • Berrilli, F., Del Moro, D., Russo, S., Consolini, G., Straus, T.: 2005b, Spatial clustering of photospheric structures. Astrophys. J.632(1), 677. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bertello, L., Pevtsov, A.A., Tlatov, A., Singh, J.: 2016, Solar Ca II K observations. Asian J. Phys.25, 295. ADS .

    ADS  Google Scholar 

  • Böhm-Vitense, E.: 2007, Chromospheric activity in G and K main-sequence stars, and what it tells us about stellar dynamos. Astrophys. J.657, 486. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bordi, I., Berrilli, F., Pietropaolo, E.: 2015, Long-term response of stratospheric ozone and temperature to solar variability. Ann. Geophys.33, 267. DOI . ADS .

    Article  ADS  Google Scholar 

  • Carrasco, V.M.S., García-Romero, J.M., Vaquero, J.M., Rodríguez, P.G., Foukal, P., Gallego, M.C., Lefèvre, L.: 2018, The umbra-penumbra area ratio of sunspots during the Maunder Minimum. Astrophys. J.865, 88. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chapman, S.: 1932, Discussion of memoirs. On a theory of upper-atmospheric ozone. Q. J. Roy. Meteorol. Soc.58, 11. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chatterjee, S., Banerjee, D., McIntosh, S.W., Leamon, R.J., Dikpati, M., Srivastava, A.K., Bertello, L.: 2019, Signature of extended solar cycles as detected from Ca II K synoptic maps of Kodaikanal and Mount Wilson Observatory. Astrophys. J. Lett.874, L4. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chatzistergos, T., Ermolli, I., Krivova, N.A., Solanki, S.K.: 2019, Analysis of full disc Ca II K spectroheliograms II. Towards an accurate assessment of long-term variations in plage areas. Astron. Astrophys.625, 22. DOI .

    Article  Google Scholar 

  • Criscuoli, S., Penza, V., Lovric, M., Berrilli, F.: 2018, The correlation of synthetic UV color versus Mg II index along the solar cycle. Astrophys. J.865, 22. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dudok de Wit, T., Kretzschmar, M., Lilensten, J., Woods, T.: 2009, Finding the best proxies for the solar UV irradiance. Geophys. Res. Lett.36(10), L10107. DOI . ADS .

    Article  ADS  Google Scholar 

  • Egeland, R., Soon, W., Baliunas, S., Hall, J.C., Pevtsov, A.A., Bertello, L.: 2017, The Mount Wilson Observatory S-index of the Sun. Astrophys. J.835, 25. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ermolli, I., Berrilli, F., Florio, A.: 2003, A measure of the network radiative properties over the solar activity cycle. Astron. Astrophys.412, 857. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ermolli, I., Criscuoli, S., Giorgi, F.: 2011, Recent results from optical synoptic observations of the solar atmosphere with ground-based instruments. Contrib. Astron. Obs. Skaln. Pleso41, 73. ADS .

    ADS  Google Scholar 

  • Ermolli, I., Criscuoli, S., Uitenbroek, H., Giorgi, F., Rast, M.P., Solanki, S.K.: 2010, Radiative emission of solar features in the Ca II K line: comparison of measurements and models. Astron. Astrophys.523, A55. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fontenla, J., Harder, G.: 2005, Physical modeling of spectral irradiance variations. Mem. Soc. Astron. Ital.76, 826. ADS .

    ADS  Google Scholar 

  • Fontenla, J.M., Harder, J., Livingston, W., Snow, M., Woods, T.: 2011, High-resolution solar spectral irradiance from extreme ultraviolet to far infrared. J. Geophys. Res., Atmos.116, D20108. DOI . ADS .

    Article  ADS  Google Scholar 

  • Forte, R., Jefferies, S.M., Berrilli, F., Del Moro, D., Fleck, B., Giovannelli, L., Murphy, N., Pietropaolo, E., Rodgers, W.: 2018, The MOTH II Doppler-magnetographs and data calibration pipeline. In: Foullon, C., Malandraki, O.E. (eds.) Space Weather of the Heliosphere: Processes and Forecasts, IAU Symposium335, 335. DOI . ADS .

    Chapter  Google Scholar 

  • Goldbaum, N., Rast, M.P., Ermolli, I., Sands, J.S., Berrilli, F.: 2009, The intensity profile of the solar supergranulation. Astrophys. J.707, 67. DOI . ADS .

    Article  ADS  Google Scholar 

  • Haigh, J.D.: 2003, The effects of solar variability on the Earth’s climate. Phil. Trans. Roy. Soc. London Ser. A361, 95. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hall, J.C., Lockwood, G.W.: 1998, The solar activity cycle. I. Observations of the end of cycle 22, 1993 September–1997 February. Astrophys. J.493, 494. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jha, B.K., Mandal, S., Banerjee, D.: 2018, Long-term variation of sunspot penumbra to umbra area ratio. In: Banerjee, D., Jiang, J., Kusano, K., Solanki, S. (eds.): IAU Symposium340 185. DOI . ADS .

    Chapter  Google Scholar 

  • Jungclaus, J.H., Bard, E., Baroni, M., Braconnot, P., Cao, J., Chini, L.P., Egorova, T., Evans, M., Fidel González-Rouco, J., Goosse, H., Hurtt, G.C., Joos, F., Kaplan, J.O., Khodri, M., Klein Goldewijk, K., Krivova, N., LeGrande, A.N., Lorenz, S.J., Luterbacher, J., Man, W., Maycock, A.C., Meinshausen, M., Moberg, A., Muscheler, R., Nehrbass-Ahles, C., Otto-Bliesner, B.I., Phipps, S.J., Pongratz, J., Rozanov, E., Schmidt, G.A., Schmidt, H., Schmutz, W., Schurer, A., Shapiro, A.I., Sigl, M., Smerdon, J.E., Solanki, S.K., Timmreck, C., Toohey, M., Usoskin, I.G., Wagner, S., Wu, C.-J., Leng Yeo, K., Zanchettin, D., Zhang, Q., Zorita, E.: 2017, The PMIP4 contribution to CMIP6—Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations. Geosci. Model Dev.10, 4005. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kaltenegger, L.: 2017, How to characterize habitable worlds and signs of life. Annu. Rev. Astron. Astrophys.55, 433. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lean, J.: 2000, Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophys. Res. Lett.27, 2425. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lean, J.: 2017, Sun–Climate connections. Oxford Research Encuclopedia. DOI .

  • Lean, J.L., White, O.R., Livingston, W.C., Heath, D.F., Donnelly, R.F., Skumanich, A.: 1982, A three-component model of the variability of the solar ultraviolet flux 145–200 nM. J. Geophys. Res.87, 10307. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lee, J.N., Cahalan, R.F., Wu, D.L.: 2018, Solar rotational modulations of spectral irradiance and correlations with the variability of solar proxies. Geophys. Res. Abstr.20, A33.

    Google Scholar 

  • Linsky, J.: 2014, The radiation environment of exoplanet atmospheres. Challenges5, 351. DOI . ADS .

    Article  ADS  Google Scholar 

  • Linsky, J.L.: 2017, Stellar model chromospheres and spectroscopic diagnostics. Annu. Rev. Astron. Astrophys.55, 159. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lovric, M., Tosone, F., Pietropaolo, E., Del Moro, D., Giovannelli, L., Cagnazzo, C., Berrilli, F.: 2017, The dependence of the [FUV-MUV] colour on solar cycle. J. Space Weather Space Clim.7(27), A6. DOI . ADS .

    Article  Google Scholar 

  • McClintock, W.E., Rottman, G.J., Woods, T.N.: 2005, Solar-stellar irradiance comparison experiment II (SOLSTICE II): Instrument concept and design. Solar Phys.230(1–2), 225. DOI . ADS .

    Article  ADS  Google Scholar 

  • McClintock, W.E., Snow, M., Woods, T.N.: 2005, Solar-stellar irradiance comparison experiment II (SOLSTICE II): Pre-launch and on-orbit calibrations. Solar Phys.230(1–2), 259. DOI . ADS .

    Article  ADS  Google Scholar 

  • Muscheler, R., Adolphi, F., Herbst, K., Nilsson, A.: 2016, The revised sunspot record in comparison to cosmogenic radionuclide-based solar activity reconstructions. Solar Phys.291(9–10), 3025. DOI . ADS .

    Article  ADS  Google Scholar 

  • Penza, V., Pietropaolo, E., Livingston, W.: 2006, Modeling the cyclic modulation of photospheric lines. Astron. Astrophys.454, 349. DOI . ADS .

    Article  ADS  Google Scholar 

  • Penza, V., Caccin, B., Ermolli, I., Centrone, M., Gomez, M.T.: 2003, Modeling solar irradiance variations through PSPT images and semiempirical models. In: Wilson, A. (ed.) Solar Variability as an Input to the Earth’s Environment, ESA Special Publication535, 299. ADS .

    Google Scholar 

  • Pevtsov, A.A., Virtanen, I., Mursula, K., Tlatov, A., Bertello, L.: 2016, Reconstructing solar magnetic fields from historical observations. I. Renormalized Ca K spectroheliograms and pseudo-magnetograms. Astron. Astrophys.585, A40. DOI . ADS .

    Article  ADS  Google Scholar 

  • Preminger, D.G., Walton, S.R.: 2006, Modeling solar spectral irradiance and total magnetic flux using sunspot areas. Solar Phys.235(1–2), 387. DOI . ADS .

    Article  ADS  Google Scholar 

  • Preminger, D.G., Chapman, G.A., Cookson, A.M.: 2011, Activity-brightness correlations for the Sun and sun-like stars. Astrophys. J. Lett.739(2), L45. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rast, M.P., Fox, P.A., Lin, H., Lites, B.W., Meisner, R.W., White, O.R.: 1999, Bright rings around sunspots. Nature401, 678. DOI . ADS .

    Article  ADS  Google Scholar 

  • Saar, S.H., Brandenburg, A.: 1999, Time evolution of the magnetic activity cycle period. II. Results for an expanded stellar sample. Astrophys. J.524, 295. DOI . ADS .

    Article  ADS  Google Scholar 

  • Salabert, D., García, R.A., Beck, P.G., Egeland, R., Pallé, P.L., Mathur, S., Metcalfe, T.S., do Nascimento, J.-D. Jr., Ceillier, T., Andersen, M.F., Triviño Hage, A.: 2016, Photospheric and chromospheric magnetic activity of seismic solar analogs. Observational inputs on the solar-stellar connection from Kepler and Hermes. Astron. Astrophys.596, A31. DOI . ADS .

    Article  ADS  Google Scholar 

  • Seppälä, A., Matthes, K., Randall, C.E., Mironova, I.A.: 2014, What is the solar influence on climate? Overview of activities during CAWSES-II. Prog. Earth Planet. Sci.1, 24. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shapiro, A.I., Solanki, S.K., Krivova, N.A., Yeo, K.L., Schmutz, W.K.: 2016, Are solar brightness variations faculae- or spot-dominated? Astron. Astrophys.589, A46. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tapping, K., Morgan, C.: 2017, Changing relationships between sunspot number, total sunspot area and \(\mbox{F}_{10.7}\) in Cycles 23 and 24. Solar Phys.292, 73. DOI .

    Article  ADS  Google Scholar 

  • Tian, F., France, K., Linsky, J.L., Mauas, P.J.D., Vieytes, M.C.: 2014, High stellar FUV/NUV ratio and oxygen contents in the atmospheres of potentially habitable planets. Earth Planet. Sci. Lett.385, 22. DOI . ADS .

    Article  ADS  Google Scholar 

  • Uitenbroek, H.: 2001, Multilevel radiative transfer with partial frequency redistribution. Astrophys. J.557, 389. DOI . ADS .

    Article  ADS  Google Scholar 

  • Viereck, R.A., Floyd, L.E., Crane, P.C., Woods, T.N., Knapp, B.G., Rottman, G., Weber, M., Puga, L.C., DeLand, M.T.: 2004, A composite Mg II index spanning from 1978 to 2003. Space Weather2, S10005. DOI . ADS .

    Article  ADS  Google Scholar 

  • Walton, S.R., Preminger, D.G., Chapman, G.A.: 2003, The contribution of faculae and network to long-term changes in the total solar irradiance. Astrophys. J.590(2), 1088. DOI . ADS .

    Article  ADS  Google Scholar 

  • Warnecke, J.: 2018, Dynamo cycles in global convection simulations of solar-like stars. Astron. Astrophys.616, A72. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wilson, O.C.: 1978, Chromospheric variations in main-sequence stars. Astrophys. J.226, 379. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wilson, R.M., Hathaway, D.H.: 2006, On the Relation Between Sunspot Area and Sunspot Number. Technical report. ADS .

  • Wu, C.-J., Krivova, N.A., Solanki, S.K., Usoskin, I.G.: 2018, Solar total and spectral irradiance reconstruction over the last 9000 years. Astron. Astrophys.620, A120. DOI . ADS .

    Article  Google Scholar 

  • Yeo, K.L., Krivova, N.A., Solanki, S.K.: 2014, Solar cycle variation in solar irradiance. Space Sci. Rev.186, 137. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yeo, K.L., Krivova, N.A., Solanki, S.K.: 2017, EMPIRE: a robust empirical reconstruction of solar irradiance variability. J. Geophys. Res.122(4), 3888. DOI . ADS .

    Article  Google Scholar 

  • Yeo, K.L., Solanki, S.K., Norris, C.M., Beeck, B., Unruh, Y.C., Krivova, N.A.: 2017, Solar irradiance variability is caused by the magnetic activity on the solar surface. Phys. Rev. Lett.119, 091102. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under cooperative agreement with the National Science Foundation. The Time series of the Ca ii K uses SOLIS data obtained by the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation downloaded from the SOLIS website (https://solis.nso.edu/0/iss/). The following institutes are acknowledged for providing the data: Laboratory for Atmospheric and Space Physics (Boulder, CO) for SORCE SOLSTICE SSI data (http://lasp.colorado.edu/home/sorce/data/) and University of Bremen (Bremen, Germany) for Mg ii index data (http://www.iup.uni-bremen.de/gome/gomemgii.html). This work was partially supported by Italian MIUR-PRIN grant 2017 “on Circumterrestrial Environment: Impact of Sun–Earth Interaction” and the Joint Research PhD Program in “Astronomy, Astrophysics and Space Science” between the universities of Roma Tor Vergata, Roma Sapienza and INAF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Berrilli.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Irradiance Variations of the Sun and Sun-like Stars

Guest Editors: Greg Kopp and Alexander Shapiro

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berrilli, F., Criscuoli, S., Penza, V. et al. Long-term (1749–2015) Variations of Solar UV Spectral Indices. Sol Phys 295, 38 (2020). https://doi.org/10.1007/s11207-020-01603-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01603-5

Keywords

Navigation