Skip to main content
Log in

The Solar Radius at 37 GHz Through Cycles 22 to 24

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

To better understand the influence of the activity cycle on the solar atmosphere, we report the time variation of the radius observed at 37 GHz (\(\lambda=8.1\mbox{ mm}\)) obtained by the Metsähovi Radio Observatory (MRO) through Solar Cycles 22 to 24 (1989 – 2015). Almost 5800 maps were analyzed, however, due to instrumental setup changes the dataset showed four distinct behaviors, which required a normalization process to allow for the whole interval analysis. When the whole period was considered, the results showed a positive correlation index of 0.17 between the monthly means of the solar radius at 37 GHz and solar flux obtained at 10.7 cm (F10.7). This correlation index increased to 0.44, when only the data obtained during the last period without instrumental changes were considered (1999 – 2015). The solar radius correlation with the solar cycle agrees with the previous results obtained at mm/cm wavelengths (17 and 48 GHz), nevertheless, this result is the opposite of that reported at submillimeter wavelengths (212 and 405 GHz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Andrei, A.H., Boscardin, S.C., Chollet, F., Delmas, C., Golbasi, O., Jilinski, E.G., Kiliç, H., Laclare, F., Morand, F., Penna, J.L., Reis Neto, E.: 2004, Comparison of CCD astrolabe multi-site solar diameter observations. Astron. Astrophys.427, 717. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bachurin, A.F.: 1983, Variation in solar radio radius with the phase of the solar activity cycle at wavelengths of 2.25 and 3.5 cm. Izv. Ordena Trud. Krasn. Znam. Krym. Astrofiz. Obs.68, 68. ADS .

    ADS  Google Scholar 

  • Basu, D.: 1998, Radius of the Sun in relation to solar activity. Solar Phys.183, 291. ADS .

    Article  ADS  Google Scholar 

  • Battaglia, M., Hudson, H.S., Hurford, G.J., Krucker, S., Schwartz, R.A.: 2017, The solar X-ray limb. Astrophys. J.843(2), 123. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bush, R.I., Emilio, M., Kuhn, J.R.: 2010, On the constancy of the solar radius. III. Astrophys. J.716, 1381. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chapman, G.A., Dobias, J.J., Walton, S.R.: 2008, On the variability of the apparent solar radius. Astrophys. J.681, 1698. DOI . ADS .

    Article  ADS  Google Scholar 

  • Costa, J.E.R., Silva, A.V.R., Makhmutov, V.S., Rolli, E., Kaufmann, P., Magun, A.: 1999, Solar radius variations at 48 GHz correlated with solar irradiance. Astrophys. J. Lett.520, L63. DOI . ADS .

    Article  ADS  Google Scholar 

  • Emilio, M., Leister, N.V.: 2005, Solar diameter measurements at São Paulo Observatory. Mon. Not. Roy. Astron. Soc.361, 1005. DOI . ADS .

    Article  ADS  Google Scholar 

  • Emilio, M., Kuhn, J.R., Bush, R.I., Scherrer, P.: 2000, On the constancy of the solar diameter. Astrophys. J.543, 1007. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gilliland, R.L.: 1981, Solar radius variations over the past 265 years. Astrophys. J.248, 1144. DOI . ADS .

    Article  ADS  Google Scholar 

  • Giménez de Castro, C.G., Varela Saraiva, A.C., Costa, J.E.R., Selhorst, C.L.: 2007, The solar radius in the EUV during the cycle XXIII. Astron. Astrophys.476, 369. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kallunki, J., Tornikoski, M.: 2018, Measurements of the quiet-Sun level brightness temperature at 8 mm. Solar Phys.293, 156. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kilic, H., Golbasi, O.: 2011, Comparison of long-term trend of solar radius with sunspot activity and flare index. Astrophys. Space Sci.334, 75. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Kosovichev, A., Rozelot, J.-P.: 2018a, Cyclic changes of the Sun’s seismic radius. Astrophys. J.861(2), 90. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kosovichev, A.G., Rozelot, J.P.: 2018b, Solar cycle variations of rotation and asphericity in the near-surface shear layer. J. Atmos. Solar-Terr. Phys.176, 21. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kuhn, J.R., Bush, R.I., Emilio, M., Scherrer, P.H.: 2004, On the constancy of the solar diameter. II. Astrophys. J.613, 1241. DOI . ADS .

    Article  ADS  Google Scholar 

  • Laclare, F., Delmas, C., Coin, J.P., Irbah, A.: 1996, Measurements and variations of the solar diameter. Solar Phys.166, 211. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lefebvre, S., Bertello, L., Ulrich, R.K., Boyden, J.E., Rozelot, J.P.: 2006, Solar radius measurements at Mount Wilson Observatory. Astrophys. J.649, 444. DOI . ADS .

    Article  ADS  Google Scholar 

  • Menezes, F., Valio, A.: 2017, Solar radius at subterahertz frequencies and its relation to solar activity. Solar Phys.292, 195. DOI . ADS .

    Article  ADS  Google Scholar 

  • Noël, F.: 2004, Solar cycle dependence of the apparent radius of the Sun. Astron. Astrophys.413, 725. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rozelot, J.P.: 1998, The correlation between the Calern solar diameter measurements and the solar irradiance. Solar Phys.177, 321. ADS .

    Article  ADS  Google Scholar 

  • Rozelot, J.P., Kosovichev, A., Kilcik, A.: 2015, Solar radius variations: an inquisitive wavelength dependence. Astrophys. J.812, 91. DOI . ADS .

    Article  ADS  Google Scholar 

  • Scargle, J.D.: 1982, Studies in astronomical time series analysis. II – Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J.263, 835. DOI . ADS .

    Article  ADS  Google Scholar 

  • Selhorst, C.L., Silva, A.V.R., Costa, J.E.R.: 2004, Radius variations over a solar cycle. Astron. Astrophys.420, 1117. ADS .

    Article  ADS  Google Scholar 

  • Selhorst, C.L., Giménez de Castro, C.G., Válio, A., Costa, J.E.R., Shibasaki, K.: 2011, The behavior of the 17 GHz solar radius and limb brightening in the spotless minimum XXIII/XXIV. Astrophys. J.734, 64. DOI . ADS .

    Article  ADS  Google Scholar 

  • Selhorst, C.L., Simões, P.J.A., Brajša, R., Valio, A., Giménez de Castro, C.G., Costa, J.E.R., Menezes, F., Rozelot, J.P., Hales, A.S., Iwai, K., White, S.: 2019, Solar polar brightening and radius at 100 and 230 GHz observed by ALMA. Astrophys. J.871(1), 45. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C.L.S. acknowledges financial support from the São Paulo Research Foundation (FAPESP), grant number 2019/03301-8. C. L. S. and C. G. G. C. are thankful to CNPq by the support through grants 306638/2018-5 and 305203/2016-9, respectively. The authors also thank Niko Lavonen for help with the data reduction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caius L. Selhorst.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selhorst, C.L., Kallunki, J., Giménez de Castro, C.G. et al. The Solar Radius at 37 GHz Through Cycles 22 to 24. Sol Phys 294, 175 (2019). https://doi.org/10.1007/s11207-019-1568-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1568-6

Keywords

Navigation