Re-analysis of Lepping’s Fitting Method for Magnetic Clouds: Lundquist Fit Reloaded

Abstract

Magnetic clouds (MCs) are a subset of ejecta, launched from the Sun as coronal mass ejections. The coherent rotation of the magnetic field vector observed in MCs leads to envision MCs as formed by flux ropes (FRs). Among all the methods used to analyze MCs, Lepping’s method (Lepping, Burlaga, and Jones in J. Geophys. Res.95, 11957, 1990) is the broadest used. While this fitting method does not require the axial field component to vanish at the MC boundaries, this idea is largely spread in publications. We revisit Lepping’s method to emphasize its hypothesis and the meaning of its output parameters. As originally defined, these parameters imply a fitted FR which could be smaller or larger than the studied MC. We rather provide a re-interpretation of Lepping’s results with a fitted model limited to the observed MC interval. We find that typically the crossed FRs are asymmetric with a larger side both in size and magnetic flux before or after the FR axis. At the boundary of the largest side we find an axial magnetic field component distributed around zero which we justify by the physics of solar eruptions. In contrast, at the boundary of the smaller side the axial field distribution is shifted to positive values, as expected with erosion acting during the interplanetary travel. This new analysis of Lepping’s results has several implications. First, global quantities, such as magnetic fluxes and helicity, need to be revised depending on the aim (estimating global properties of FRs just after the solar launch or at 1 au). Second, the deduced twist profiles in MCs range quasi-continuously from nearly uniform, to increasing away from the FR axis, up to a reversal near the MC boundaries. There is no trace of outsider cases, but a continuum of cases. Finally, the impact parameter of the remaining FR crossed at 1 au is revised. Its distribution is compatible with weakly flattened FR cross-sections.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

References

  1. Al-Haddad, N., Nieves-Chinchilla, T., Savani, N.P., Möstl, C., Marubashi, K., Hidalgo, M.A., Roussev, I.I., Poedts, S., Farrugia, C.J.: 2013, Magnetic field configuration models and reconstruction methods for interplanetary coronal mass ejections. Solar Phys.284, 129. DOI . ADS .

    ADS  Article  Google Scholar 

  2. Asai, A., Ishii, T.T., Kurokawa, H., Yokoyama, T., Shimojo, M.: 2003, Evolution of conjugate footpoints inside flare ribbons during a great two-ribbon flare on 2001 April 10. Astrophys. J.586, 624. DOI . ADS .

    ADS  Article  Google Scholar 

  3. Aulanier, G., Janvier, M., Schmieder, B.: 2012, The standard flare model in three dimensions. I. Strong-to-weak shear transition in post-flare loops. Astron. Astrophys.543, A110. DOI . ADS .

    ADS  Article  Google Scholar 

  4. Berger, M.A.: 2003, In: Ferriz-Mas, A., Núñez, M. (eds.) Topological Quantities in Magnetohydrodynamics, 345. DOI . ADS .

    Chapter  MATH  Google Scholar 

  5. Burlaga, L.F.: 1995, Interplanetary magnetohydrodynamics. In: Interplanetary Magnetohydrodynamics3. ADS .

    Google Scholar 

  6. Burlaga, L.F., Behannon, K.W.: 1982, Magnetic clouds – Voyager observations between 2 and 4 AU. Solar Phys.81, 181. DOI . ADS .

    ADS  Article  Google Scholar 

  7. Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res.86, 6673. DOI . ADS .

    ADS  Article  Google Scholar 

  8. Burlaga, L., Fitzenreiter, R., Lepping, R., Ogilvie, K., Szabo, A., Lazarus, A., Steinberg, J., Gloeckler, G., Howard, R., Michels, D., Farrugia, C., Lin, R.P., Larson, D.E.: 1998, A magnetic cloud containing prominence material – January 1997. J. Geophys. Res.103, 277. DOI . ADS .

    ADS  Article  Google Scholar 

  9. Cho, K.-S., Park, S.-H., Marubashi, K., Gopalswamy, N., Akiyama, S., Yashiro, S., Kim, R.-S., Lim, E.-K.: 2013, Comparison of helicity signs in interplanetary CMEs and their solar source regions. Solar Phys.284(1), 105. DOI . ADS .

    ADS  Article  Google Scholar 

  10. Dasso, S., Mandrini, C.H., Démoulin, P., Farrugia, C.J.: 2003, Magnetic helicity analysis of an interplanetary twisted flux tube. J. Geophys. Res.108, 1362. DOI . ADS .

    Article  Google Scholar 

  11. Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L., Gulisano, A.M.: 2005a, Large scale MHD properties of interplanetary magnetic clouds. Adv. Space Res.35, 711. DOI . ADS .

    ADS  Article  Google Scholar 

  12. Dasso, S., Mandrini, C.H., Gulisano, A.M., Démoulin, P.: 2005b, A direct method to estimate magnetic helicity in magnetic clouds. In: Dere, K., Wang, J., Yan, Y. (eds.) Coronal and Stellar Mass Ejections, IAU Symposium226, 403. DOI . ADS .

    Chapter  Google Scholar 

  13. Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L.: 2006, A new model-independent method to compute magnetic helicity in magnetic clouds. Astron. Astrophys.455, 349. DOI . ADS .

    ADS  Article  MATH  Google Scholar 

  14. Dasso, S., Nakwacki, M.S., Démoulin, P., Mandrini, C.H.: 2007, Progressive transformation of a flux rope to an ICME. Comparative analysis using the direct and fitted expansion methods. Solar Phys.244, 115. DOI . ADS .

    ADS  Article  Google Scholar 

  15. Démoulin, P., Dasso, S.: 2009, Causes and consequences of magnetic cloud expansion. Astron. Astrophys.498, 551. DOI . ADS .

    ADS  Article  MATH  Google Scholar 

  16. Démoulin, P., Dasso, S., Janvier, M.: 2013, Does spacecraft trajectory strongly affect detection of magnetic clouds? Astron. Astrophys.550, A3. DOI . ADS .

    ADS  Article  Google Scholar 

  17. Démoulin, P., Nakwacki, M.S., Dasso, S., Mandrini, C.H.: 2008, Expected in situ velocities from a hierarchical model for expanding interplanetary coronal mass ejections. Solar Phys.250, 347. DOI . ADS .

    ADS  Article  Google Scholar 

  18. Farrugia, C.J., Janoo, L.A., Torbert, R.B., Quinn, J.M., Ogilvie, K.W., Lepping, R.P., Fitzenreiter, R.J., Steinberg, J.T., Lazarus, A.J., Lin, R.P., Larson, D., Dasso, S., Gratton, F.T., Lin, Y., Berdichevsky, D.: 1999, A uniform-twist magnetic flux rope in the solar wind. In: Habbal, S.R., Esser, R., Hollweg, J.V., Isenberg, P.A. (eds.) American Institute of Physics Conference Series471, 745. DOI . ADS .

    Chapter  Google Scholar 

  19. Gold, T., Hoyle, F.: 1960, On the origin of solar flares. Mon. Not. Roy. Astron. Soc.120, 89. DOI . ADS .

    ADS  Article  Google Scholar 

  20. Goldstein, H.: 1983, On the field configuration in magnetic clouds. In: NASA Conference Publication, 228. 0.731. ADS .

    Google Scholar 

  21. Good, S.W., Kilpua, E.K.J., LaMoury, A.T., Forsyth, R.J., Eastwood, J.P., Möstl, C.: 2019, Self-similarity of ICME flux ropes: Observations by radially aligned spacecraft in the inner heliosphere. J. Geophys. Res.124(7), 4960. DOI . ADS .

    Article  Google Scholar 

  22. Gopalswamy, N., Yashiro, S., Akiyama, S., Xie, H.: 2017, Estimation of reconnection flux using post-eruption arcades and its relevance to magnetic clouds at 1 AU. Solar Phys.292, 65. DOI . ADS .

    ADS  Article  Google Scholar 

  23. Gopalswamy, N., Akiyama, S., Yashiro, S., Xie, H.: 2018, Coronal flux ropes and their interplanetary counterparts. J. Atmos. Solar-Terr. Phys.180, 35. DOI . ADS .

    ADS  Article  Google Scholar 

  24. Gosling, J.T.: 1990, Coronal Mass Ejections and Magnetic Flux Ropes in Interplanetary Space, Washington DC American Geophysical Union Geophysical Monograph Series58, 343. DOI . ADS .

    Book  Google Scholar 

  25. Gulisano, A.M., Démoulin, P., Dasso, S., Ruiz, M.E., Marsch, E.: 2010, Global and local expansion of magnetic clouds in the inner heliosphere. Astron. Astrophys.509, A39. DOI . ADS .

    ADS  Article  Google Scholar 

  26. Hidalgo, M.A., Nieves-Chinchilla, T., Cid, C.: 2002, Elliptical cross-section model for the magnetic topology of magnetic clouds. Geophys. Res. Lett.29, 1637. DOI . ADS .

    ADS  Article  Google Scholar 

  27. Hu, Q., Qiu, J., Krucker, S.: 2015, Magnetic field line lengths inside interplanetary magnetic flux ropes. J. Geophys. Res.120(7), 5266. DOI . ADS .

    Article  Google Scholar 

  28. Hu, Q., Qiu, J., Dasgupta, B., Khare, A., Webb, G.M.: 2014, Structures of interplanetary magnetic flux ropes and comparison with their solar sources. Astrophys. J.793, 53. DOI . ADS .

    ADS  Article  Google Scholar 

  29. Janvier, M.: 2017, Three-dimensional magnetic reconnection and its application to solar flares. J. Plasma Phys.83(1), 535830101. DOI . ADS .

    Article  Google Scholar 

  30. Janvier, M., Démoulin, P., Dasso, S.: 2013, Global axis shape of magnetic clouds deduced from the distribution of their local axis orientation. Astron. Astrophys.556, A50. DOI . ADS .

    ADS  Article  Google Scholar 

  31. Janvier, M., Dasso, S., Démoulin, P., Masías-Meza, J.J., Lugaz, N.: 2015, Comparing generic models for interplanetary shocks and magnetic clouds axis configurations at 1 AU. J. Geophys. Res.120, 3328. DOI . ADS .

    Article  Google Scholar 

  32. Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2008, Evolution of solar wind structures from 0.72 to 1 AU. Adv. Space Res.41(2), 259. DOI . ADS .

    ADS  Article  Google Scholar 

  33. Kilpua, E.K.J., Liewer, P.C., Farrugia, C., Luhmann, J.G., Möstl, C., Li, Y., Liu, Y., Lynch, B.J., Russell, C.T., Vourlidas, A., Acuna, M.H., Galvin, A.B., Larson, D., Sauvaud, J.A.: 2009, Multispacecraft observations of magnetic clouds and their solar origins between 19 and 23 May 2007. Solar Phys.254, 325. DOI .

    ADS  Article  Google Scholar 

  34. Kliem, B., Török, T., Thompson, W.T.: 2012, A parametric study of erupting flux rope rotation. Modeling the “cartwheel CME” on 9 April 2008. Solar Phys.281(1), 137. DOI . ADS .

    ADS  Article  Google Scholar 

  35. Lavraud, B., Ruffenach, A., Rouillard, A.P., Kajdic, P., Manchester, W.B., Lugaz, N.: 2014, Geo-effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection. J. Geophys. Res.119(1), 26. DOI . ADS .

    Article  Google Scholar 

  36. Leitner, M., Farrugia, C.J., Möstl, C., Ogilvie, K.W., Galvin, A.B., Schwenn, R., Biernat, H.K.: 2007, Consequences of the force-free model of magnetic clouds for their heliospheric evolution. J. Geophys. Res.112, A06113. DOI . ADS .

    ADS  Article  Google Scholar 

  37. Lepping, R.P., Berdichevsky, D.B., Ferguson, T.J.: 2003, Estimated errors in magnetic cloud model fit parameters with force-free cylindrically symmetric assumptions. J. Geophys. Res.108(A10), 1356. DOI . ADS .

    Article  Google Scholar 

  38. Lepping, R.P., Burlaga, L.F., Jones, J.A.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res.95, 11957. DOI . ADS .

    ADS  Article  Google Scholar 

  39. Lepping, R.P., Wu, C.-C.: 2007, On the variation of interplanetary magnetic cloud type through solar cycle 23: Wind events. J. Geophys. Res.112(A11), 10103. DOI . ADS .

    Article  Google Scholar 

  40. Lepping, R.P., Wu, C.C.: 2010, Selection effects in identifying magnetic clouds and the importance of the closest approach parameter. Ann. Geophys.28, 1539. DOI . ADS .

    ADS  Article  Google Scholar 

  41. Lepping, R.P., Berdichevsky, D.B., Szabo, A., Arqueros, C., Lazarus, A.J.: 2003, Profile of an average magnetic cloud at 1 au for the quiet solar phase: Wind observations. Solar Phys.212, 425. DOI . ADS .

    ADS  Article  Google Scholar 

  42. Lepping, R.P., Berdichevsky, D.B., Wu, C.C., Szabo, A., Narock, T., Mariani, F., Lazarus, A.J., Quivers, J.: 2006, A summary of Wind magnetic clouds for years 1995–2003: Model-fitted parameters, associated errors and classifications. Ann. Geophys.24, 215. DOI . ADS .

    ADS  Article  Google Scholar 

  43. Lepping, R.P., Wu, C.-C., Berdichevsky, D.B., Szabo, A.: 2018, Wind magnetic clouds for the period 2013–2015: Model fitting, types, associated shock waves, and comparisons to other periods. Solar Phys.293(4), 65. DOI . ADS .

    ADS  Article  Google Scholar 

  44. Liu, Y., Luhmann, J.G., Müller-Mellin, R., Schroeder, P.C., Wang, L., Lin, R.P., Bale, S.D., Li, Y., Acuña, M.H., Sauvaud, J.-A.: 2008, A comprehensive view of the 2006 December 13 CME: From the Sun to interplanetary space. Astrophys. J.689, 563. DOI . ADS .

    ADS  Article  Google Scholar 

  45. Liu, R., Liu, C., Wang, S., Deng, N., Wang, H.: 2010, Sigmoid-to-flux-rope transition leading to a loop-like coronal mass ejection. Astrophys. J. Lett.725, L84. DOI . ADS .

    ADS  Article  Google Scholar 

  46. Lundquist, S.: 1950, Magnetohydrostatic fields. Ark. Fys.2, 361.

    MathSciNet  MATH  Google Scholar 

  47. Lynch, B.J., Zurbuchen, T.H., Fisk, L.A., Antiochos, S.K.: 2003, Internal structure of magnetic clouds: Plasma and composition. J. Geophys. Res.108(A6), A01239. DOI . ADS .

    ADS  Article  Google Scholar 

  48. Lynch, B.J., Gruesbeck, J.R., Zurbuchen, T.H., Antiochos, S.K.: 2005, Solar cycle-dependent helicity transport by magnetic clouds. J. Geophys. Res.110, A08107. DOI . ADS .

    ADS  Article  Google Scholar 

  49. Marubashi, K., Akiyama, S., Yashiro, S., Gopalswamy, N., Cho, K.-S., Park, Y.-D.: 2015, Geometrical relationship between interplanetary flux ropes and their solar sources. Solar Phys.290(5), 1371. DOI . ADS .

    ADS  Article  Google Scholar 

  50. Masías-Meza, J.J., Dasso, S., Démoulin, P., Rodriguez, L., Janvier, M.: 2016, Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays. Astron. Astrophys.592, A118. DOI . ADS .

    ADS  Article  Google Scholar 

  51. Möstl, C., Farrugia, C.J., Biernat, H.K., Leitner, M., Kilpua, E.K.J., Galvin, A.B., Luhmann, J.G.: 2009, Optimized Grad–Shafranov reconstruction of a magnetic cloud using STEREO-Wind observations. Solar Phys.256, 427. DOI . ADS .

    ADS  Article  Google Scholar 

  52. Nakwacki, M., Dasso, S., Démoulin, P., Mandrini, C.H., Gulisano, A.M.: 2011, Dynamical evolution of a magnetic cloud from the Sun to 5.4 AU. Astron. Astrophys.535, A52. DOI . ADS .

    ADS  Article  Google Scholar 

  53. Nieves-Chinchilla, T., Hidalgo, M.A., Sequeiros, J.: 2005, Magnetic clouds observed at 1 au during the period 2000–2003. Solar Phys.232(1–2), 105. DOI . ADS .

    ADS  Article  Google Scholar 

  54. Nieves-Chinchilla, T., Linton, M.G., Hidalgo, M.A., Vourlidas, A.: 2018, Elliptic-cylindrical analytical flux rope model for magnetic clouds. Astrophys. J.861(2), 139. DOI . ADS .

    ADS  Article  Google Scholar 

  55. Nishimura, N., Marubashi, K., Tokumaru, M.: 2019, Comparison of cylindrical interplanetary flux-rope model fitting with different boundary pitch-angle treatments. Solar Phys.294(4), 49. DOI . ADS .

    ADS  Article  Google Scholar 

  56. Pal, S., Gopalswamy, N., Nandy, D., Akiyama, S., Yashiro, S., Makela, P., Xie, H.: 2017, A Sun-to-Earth analysis of magnetic helicity of the 2013 March 17–18 interplanetary coronal mass ejection. Astrophys. J.851(2), 123. DOI . ADS .

    ADS  Article  Google Scholar 

  57. Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys. J.659, 758. DOI . ADS .

    ADS  Article  Google Scholar 

  58. Rodriguez, L., Zhukov, A.N., Dasso, S., Mandrini, C.H., Cremades, H., Cid, C., Cerrato, Y., Saiz, E., Aran, A., Menvielle, M., Poedts, S., Schmieder, B.: 2008, Magnetic clouds seen at different locations in the heliosphere. Ann. Geophys.26, 213. DOI . ADS .

    ADS  Article  Google Scholar 

  59. Ruffenach, A., Lavraud, B., Farrugia, C.J., Démoulin, P., Dasso, S., Owens, M.J., Sauvaud, J.-A., Rouillard, A.P., Lynnyk, A., Foullon, C., Savani, N.P., Luhmann, J.G., Galvin, A.B.: 2015, Statistical study of magnetic cloud erosion by magnetic reconnection. J. Geophys. Res.120, 43. DOI . ADS .

    Article  Google Scholar 

  60. Schrijver, C.J., Title, A.M.: 2011, Long-range magnetic couplings between solar flares and coronal mass ejections observed by SDO and STEREO. J. Geophys. Res.116(A4), A04108. DOI . ADS .

    ADS  Article  Google Scholar 

  61. Shimazu, H., Vandas, M.: 2002, A self-similar solution of expanding cylindrical flux ropes for any polytropic index value. Earth Planets Space54, 783. ADS .

    ADS  Article  Google Scholar 

  62. Su, Y.N., Golub, L., van Ballegooijen, A.A., Gros, M.: 2006, Analysis of magnetic shear in an X17 solar flare on October 28, 2003. Solar Phys.236, 325. DOI . ADS .

    ADS  Article  Google Scholar 

  63. Thernisien, A.F.R., Howard, R.A., Vourlidas, A.: 2006, Modeling of flux rope coronal mass ejections. Astrophys. J.652(1), 763. DOI . ADS .

    ADS  Article  Google Scholar 

  64. van Driel-Gesztelyi, L., Green, L.M.: 2015, Evolution of active regions. Living Rev. Solar Phys.12(1), 1. DOI . ADS .

    ADS  Article  Google Scholar 

  65. van Driel-Gesztelyi, L., Baker, D., Török, T., Pariat, E., Green, L.M., Williams, D.R., Carlyle, J., Valori, G., Démoulin, P., Kliem, B., Long, D.M., Matthews, S.A., Malherbe, J.-M.: 2014, Coronal magnetic reconnection driven by CME expansion – The 2011 June 7 event. Astrophys. J.788(1), 85. DOI . ADS .

    ADS  Article  Google Scholar 

  66. Vandas, M., Geranios, A.: 2001, November 17–18, 1975, event: A clue to an internal structure of magnetic clouds? J. Geophys. Res.106, 1849. DOI . ADS .

    ADS  Article  Google Scholar 

  67. Vandas, M., Romashets, E.P.: 2003, A force-free field with constant alpha in an oblate cylinder: A generalization of the Lundquist solution. Astron. Astrophys.398, 801. DOI . ADS .

    ADS  Article  Google Scholar 

  68. Vandas, M., Romashets, E., Geranios, A.: 2015, Modeling of magnetic cloud expansion. Astron. Astrophys.583, A78. DOI . ADS .

    ADS  Article  Google Scholar 

  69. Vandas, M., Romashets, E., Watari, S.: 2005, Magnetic clouds of oblate shapes. Planet. Space Sci.53, 19. DOI . ADS .

    ADS  Article  Google Scholar 

  70. Vandas, M., Romashets, E.P., Watari, S., Geranios, A., Antoniadou, E., Zacharopoulou, O.: 2006, Comparison of force-free flux rope models with observations of magnetic clouds. Adv. Space Res.38(3), 441. DOI . ADS .

    ADS  Article  Google Scholar 

  71. Vemareddy, P., Démoulin, P.: 2017, Successive injection of opposite magnetic helicity in solar active region NOAA 11928. Astron. Astrophys.597, A104. DOI . ADS .

    ADS  Article  Google Scholar 

  72. Wang, Y., Zhou, Z., Shen, C., Liu, R., Wang, S.: 2015, Investigating plasma motion of magnetic clouds at 1 AU through a velocity-modified cylindrical force-free flux rope model. J. Geophys. Res.120(3), 1543. DOI . ADS .

    Article  Google Scholar 

  73. Wang, Y., Zhuang, B., Hu, Q., Liu, R., Shen, C., Chi, Y.: 2016, On the twists of interplanetary magnetic flux ropes observed at 1 AU. J. Geophys. Res.121, 9316. DOI . ADS .

    Article  Google Scholar 

  74. Wang, Y., Shen, C., Liu, R., Liu, J., Guo, J., Li, X., Xu, M., Hu, Q., Zhang, T.: 2018, Understanding the twist distribution inside magnetic flux ropes by anatomizing an interplanetary magnetic cloud. J. Geophys. Res.123(5), 3238. DOI . ADS .

    Article  Google Scholar 

  75. Welsch, B.T.: 2018, Flux accretion and coronal mass ejection dynamics. Solar Phys.293(7), 113. DOI . ADS .

    ADS  Article  Google Scholar 

  76. Wood, B.E., Wu, C.-C., Lepping, R.P., Nieves-Chinchilla, T., Howard, R.A., Linton, M.G., Socker, D.G.: 2017, A STEREO survey of magnetic cloud coronal mass ejections observed at Earth in 2008–2012. Astrophys. J. Suppl.229, 29. DOI . ADS .

    ADS  Article  Google Scholar 

  77. Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev.123, 31. DOI . ADS .

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank the referee for his/her comments which broaden the potential audience of the paper. S.D. acknowledges partial support from the Argentinian grants UBACyT (UBA), and PIP-CONICET-11220130100439CO. This work was partially supported by a one-month invitation of P.D. to the Instituto de Astronomía y Física del Espacio, and by a one-month invitation of S.D. to the Observatoire de Paris. This work was supported by the Programme National PNST of CNRS/INSU co-funded by CNES and CEA. S.D. is member of the Carrera del Investigador Científico, CONICET.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pascal Démoulin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Démoulin, P., Dasso, S., Janvier, M. et al. Re-analysis of Lepping’s Fitting Method for Magnetic Clouds: Lundquist Fit Reloaded. Sol Phys 294, 172 (2019). https://doi.org/10.1007/s11207-019-1564-x

Download citation

Keywords

  • Coronal mass ejections, interplanetary
  • Helicity, magnetic
  • Magnetic fields, interplanetary